cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A328353 a(n)*S is the sum of all positive integers whose decimal expansion is up to n digits and uses six distinct nonzero digits d1,d2,d3,d4,d5,d6 such that d1+d2+d3+d4+d5+d6=S.

Original entry on oeis.org

0, 1, 67, 4063, 244039, 14643895, 878643031, 52718637847, 3163118606743, 189787118420119, 11387227117300375, 683233627110581911, 40994017627070271127, 2459641057626828406423, 147578463457625377218199, 8854707807457616670088855, 531282468447457564427312791, 31876948106847457250970656407
Offset: 0

Views

Author

Pierre-Alain Sallard, Nov 26 2019

Keywords

Comments

This sequence is the building block for the calculation of the sums of positive integers whose decimal notation only uses six distinct, nonzero digits: see the attached pdf document.

Examples

			For n=2, the sum of all positive integers whose decimal notation is only made of, let's say, the 4,5,6,7,8,9 digits with at most n=2 such digits, i.e. the sum 4+5+6+7+8+9+44+45+46+47+48+49+54+55+56+57+58+59+64+65+66+67+68+69+74+75+76+77+78+79+84+85+86+87+88+89+94+95+96+97+98+99 is equal to a(2)*(4+5+6+7+8+9) = 67*39 = 2613.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{67,-426,360},{0,1,67},20] (* Harvey P. Dale, Feb 11 2022 *)
  • Python
    [(50*60**n-59*6**n+9)//2655 for n in range(20)]

Formula

a(n) = (50*60^n - 59*6^n + 9) / 2655.
a(n) = 61*a(n-1) - 60*a(n-2) + 6^(n-1) for n > 1.
G.f.: x / (1 - 67*x + 426*x^2 -360*x^3).
a(n) = 67*a(n-1) - 426*a(n-2) + 360*a(n-3) for n > 2.