cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A328355 Let S be any integer in the range 36 <= S <= 44. Sequence has the property that a(n)*S is the sum of all positive integers whose decimal expansion has <= n digits and uses eight distinct nonzero digits d1,d2,d3,d4,d5,d6,d7,d8 such that d1+d2+d3+d4+d5+d6+d7+d8=S.

Original entry on oeis.org

0, 1, 89, 7193, 576025, 46086681, 3686971929, 294958053913, 23596646709785, 1887731755956761, 151018540629932569, 12081483251621739033, 966518660139556190745, 77321492811243031804441, 6185719424900070836714009, 494857553992010693275990553, 39588604319360895672790202905
Offset: 0

Views

Author

Pierre-Alain Sallard, Dec 10 2019

Keywords

Comments

This sequence is the building block for the calculation of the sums of positive integers whose decimal expansion uses exactly eight distinct, nonzero digits: see the attached pdf documents.

Examples

			For n=2, the sum of all positive integers whose decimal notation is made of any digit different from 0 and, let's say, 9 with at most n=2 such digits, i.e., the sum 1+2+3+4+5+6+7+8+11+12+13+14+15+16+17+18+21+...+28+31+...+38+41+...+48+51+...+58+61+...+68+71+...+78+81+...+88, is equal to a(2)*(1+2+3+4+5+6+7+8) = 89*36 = 3204.
Similarly, and always with n=2, the sum of all positive integers whose decimal notation is made of any digit different from 0 and, let's say, 8, i.e., the sum 1+2+3+4+5+6+7+9+11+..+17+19+21+...+27+29+31+...+37+39+41+...+47+49+51+...+57+59+61+...+67+69+71+...+77+79+91+...+97+99 is equal to a(2)*(1+2+3+4+5+6+7+9) = 89*37 = 3293.
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[x/(1 - 89 x + 728 x^2 - 640 x^3), {x, 0, 16}], x] (* Michael De Vlieger, Dec 10 2019 *)
  • Python
    [(70*80**n-79*8**n+9)//4977 for n in range(20)]

Formula

a(n) = (70*80^n - 79*8^n + 9) / 4977.
a(n) = 81 a(n-1) - 80 a(n-2) + 8^(n-1) for n > 1.
G.f.: x / (1 - 89*x + 728*x^2 - 640*x^3).
a(n) = 89*a(n-1) - 728*a(n-2) + 640*a(n-3) for n > 2.
E.g.f.: (9*exp(x) - 79*exp(8*x) + 70*exp(80*x))/4977. - Stefano Spezia, Dec 11 2019