cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A328375 Numbers k such that the decimal expansion of 2^k contains the substring 777.

Original entry on oeis.org

24, 40, 75, 152, 166, 179, 181, 191, 194, 199, 214, 230, 235, 260, 282, 296, 304, 311, 317, 323, 326, 332, 342, 345, 363, 370, 374, 390, 417, 424, 426, 443, 455, 468, 471, 474, 475, 483, 489, 490, 505, 512, 523, 524, 536, 540, 559, 567, 581, 584, 585, 588, 593
Offset: 1

Views

Author

Eder Vanzei, Oct 14 2019

Keywords

Comments

The decimal expansion of 2^k ends in 7776 iff k == 40 (mod 500), so the sequence is infinite. - Jon E. Schoenfield, Oct 14 2019
Conjecture: if n > 30536, then a(n) = n + 3623. - Chai Wah Wu, Oct 26 2019

Examples

			16777216 = 2^24.
		

Crossrefs

Cf. A007356 (contains 666), A030000 (contains n).

Programs

  • Maple
    q:= n-> searchtext("777", cat(2^n))>0:
    select(q, [$1..600])[];  # Alois P. Heinz, Oct 26 2019
  • Mathematica
    aQ[n_] := SequenceCount[IntegerDigits[2^n], {7, 7, 7}] > 0; Select[Range[660], aQ] (* Amiram Eldar, Oct 26 2019 *)
  • Python
    A328375_list = [k for k in range(1000) if '777' in str(2**k)] # Chai Wah Wu, Oct 26 2019