cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A328385 If n is of the form p^p, a(n) = n, otherwise a(n) is the first number found by iterating the map x -> A003415(x) that is different from n and either a prime, or whose degree (A051903) differs from the degree of n.

Original entry on oeis.org

0, 1, 1, 4, 1, 5, 1, 12, 6, 7, 1, 16, 1, 9, 8, 32, 1, 21, 1, 24, 7, 13, 1, 44, 10, 8, 27, 32, 1, 31, 1, 80, 9, 19, 12, 96, 1, 7, 16, 68, 1, 41, 1, 48, 39, 25, 1, 608, 14, 39, 20, 56, 1, 81, 16, 92, 13, 31, 1, 96, 1, 9, 51, 640, 18, 61, 1, 72, 8, 59, 1, 156, 1, 16, 55, 80, 18, 71, 1, 3424, 108, 43, 1, 128, 13, 45, 32, 140, 1, 123, 20, 96, 19
Offset: 1

Views

Author

Antti Karttunen, Oct 14 2019

Keywords

Examples

			For n = 3, 3 is a prime, thus a(3) = 1.
For n = 4, A003415(4) = 4, thus as it is among the fixed points of A003415 and a(4) = 4.
For n = 8 = 2^3, its "degree" is A051903(33) = 3, but A003415(8) = 12 = 2^2 * 3, with degree 2, thus a(8) = 12.
For n = 21 = 3*7, A051903(21) = 1, the first derivative A003415(21) = 10 = 2*5 is of the same degree as A051903(10) = 1, but then continuing, we have A003415(10) = 7, which is a prime, thus a(21) = 7.
For n = 33 = 3*11, A051903(33) = 1, A003415(33) = 14 = 2*7, is of the same degree, but on the second iteration, A003415(14) = 9 = 3^2, with A051903(9) = 2, different from the initial degree, thus a(33) = 9.
		

Crossrefs

Cf. A328384 (the number of iterations needed to reach such a number).

Programs

  • PARI
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A051903(n) = if((1==n),0,vecmax(factor(n)[, 2]));
    A328385(n) = { my(d=A051903(n), u=A003415(n)); while(u && (u!=n) && !isprime(u) && A051903(u)==d, n = u; u = A003415(u)); (u); };

Formula

a(1) = 0 [as here the degrees of 0 and 1 are considered different].
a(p) = 1 for all primes.
a(A051674(n)) = A051674(n).
a(A157037(n)) = A003415(A157037(n)), a prime.
a(A328252(n)) = A003415(A328252(n)), a squarefree number.
a(n) = A003415^(k)(n), when k = abs(A328384(n)). [Taking the abs(A328384(n))-th arithmetic derivative of n gives a(n)]