cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A328388 Lexicographically earliest infinite sequence such that a(i) = a(j) => A046523(A327860(i)) = A046523(A327860(j)) for all i, j >= 0.

Original entry on oeis.org

1, 2, 2, 3, 4, 4, 2, 3, 5, 3, 4, 4, 4, 6, 4, 4, 7, 8, 6, 6, 9, 6, 9, 9, 10, 11, 11, 10, 12, 13, 2, 14, 4, 3, 4, 8, 6, 3, 3, 4, 8, 4, 4, 4, 9, 6, 8, 8, 9, 9, 6, 6, 15, 9, 13, 11, 13, 11, 16, 13, 4, 4, 4, 4, 17, 8, 4, 8, 8, 4, 9, 8, 12, 8, 8, 18, 19, 18, 9, 9, 20, 21, 17, 17, 12, 12, 13, 12, 22, 23, 6, 6, 24, 6, 9, 9, 9, 6, 6, 6, 25, 17, 9, 17, 17, 9
Offset: 0

Views

Author

Antti Karttunen, Oct 15 2019

Keywords

Comments

Restricted growth sequence transform of A046523(A327860(n)).

Crossrefs

Cf. also A286626 (compare the scatter plots).

Programs

  • PARI
    up_to = 30030;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ From A046523
    A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
    A327860(n) = A003415(A276086(n));
    Aux328388(n) = if(!n,0,A046523(A327860(n)));
    v328388 = rgs_transform(vector(1+up_to, n, Aux328388(n-1)));
    A328388(n) = v328388[1+n];