cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A328405 The length of primorial base expansion (number of significant digits) of A276086(A276086(n)), where A276086(n) converts primorial base expansion of n into its prime product form.

Original entry on oeis.org

2, 2, 3, 2, 4, 4, 3, 4, 4, 3, 5, 5, 5, 6, 6, 6, 5, 5, 7, 6, 9, 8, 10, 14, 11, 12, 14, 12, 12, 15, 3, 4, 5, 4, 5, 6, 4, 5, 7, 3, 8, 5, 9, 9, 8, 7, 12, 7, 8, 12, 8, 7, 12, 14, 16, 15, 15, 15, 11, 12, 5, 6, 8, 7, 7, 8, 5, 7, 9, 9, 14, 12, 12, 9, 12, 7, 15, 15, 12, 12, 18, 13, 20, 17, 11, 13, 15, 14, 17, 13, 8, 9, 11, 14, 11, 13, 11, 10, 10, 10
Offset: 0

Views

Author

Antti Karttunen, Oct 16 2019

Keywords

Crossrefs

Programs

  • Mathematica
    Block[{b = MixedRadix[Reverse@ Prime@ Range@ 120], f}, f[n_] := Times @@ Power @@@ # &@ Transpose@ {Prime@ Range@ Length@ #, Reverse@ #} &@ IntegerDigits[n, b]; Array[IntegerLength[Nest[f, #, 2], b] &, 100, 0]] (* Michael De Vlieger, Oct 17 2019 *)
  • PARI
    A235224(n) = { my(s=0, p=2); while(n, s++; n = n\p; p = nextprime(1+p)); (s); };
    A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
    A276087(n) = A276086(A276086(n));
    A328405(n) = A235224(A276087(n));

Formula

a(n) = A235224(A276087(n)) = A061395(A328403(n)).
For all n, A000040(a(n)) > A328394(n).