A328421 Records in A317993.
2, 3, 4, 7, 8, 11, 12, 17, 30, 39, 52, 59
Offset: 1
Examples
Let (Z/mZ)* be the multiplicative group of integers modulo m. We have (Z/mZ)* = (Z/104Z)* has 8 solutions, namely m = 104, 105, 112, 140, 144, 156, 180, 210; for all k' < 104, (Z/mZ)* = (Z/k'Z)* has fewer than 8 solutions. So A317993(104) = 8 is a term.
Links
- Wikipedia, Multiplicative group of integers modulo n
Programs
-
PARI
b(n) = if(abs(n)==1||abs(n)==2, 2, my(i=0, k=eulerphi(n), N=floor(exp(Euler)*k*log(log(k^2))+2.5*k/log(log(k^2)))); for(j=k+1, N, if(znstar(j)[2]==znstar(n)[2], i++)); i) my(t=0); for(k=1, 20000, if(b(k)>t, print1(b(k), ", "); t=b(k))) \\ Warning: program runs for about 30 min
Comments