A328451 Sorted positions of first appearances in A328219, where if n = A000040(i_1) * ... * A000040(i_k), then A328219(n) = LCM(1+i_1,...,1+i_k).
1, 2, 3, 5, 6, 7, 13, 14, 15, 17, 19, 21, 26, 29, 35, 37, 38, 39, 42, 47, 51, 53, 58, 61, 65, 74, 78, 79, 87, 89, 91, 95, 101, 105, 106, 107, 111, 113, 119, 122, 127, 133, 141, 145, 151, 158, 159, 173, 174, 178, 181, 182, 183, 185, 195, 199, 202, 203, 214, 221
Offset: 1
Keywords
Examples
The sequence of terms together with their prime indices begins: 1: {} 2: {1} 3: {2} 5: {3} 6: {1,2} 7: {4} 13: {6} 14: {1,4} 15: {2,3} 17: {7} 19: {8} 21: {2,4} 26: {1,6} 29: {10} 35: {3,4} 37: {12} 38: {1,8} 39: {2,6} 42: {1,2,4} 47: {15}
Crossrefs
A subsequence of A005117.
Sorted positions of first appearances in A328219.
The GCD of the prime indices of n, all plus 1, is A328169(n).
The LCM of the prime indices of n, all minus 1, is A328456(n).
Partitions whose parts plus 1 are relatively prime are A318980.
Numbers whose prime indices plus 1 are relatively prime are A318981.
Programs
-
Mathematica
dav=Table[If[n==1,1,LCM@@(PrimePi/@First/@FactorInteger[n]+1)],{n,100}]; Table[Position[dav,i][[1,1]],{i,dav//.{A___,x_,B___,x_,C___}:>{A,x,B,C}}]
-
PARI
up_to = 1024; ordinal_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), pt); for(i=1, length(invec), if(mapisdefined(om,invec[i]), pt = mapget(om, invec[i]), pt = 0); outvec[i] = (1+pt); mapput(om,invec[i],(1+pt))); outvec; }; A003961(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ From A003961 A290103(n) = lcm(apply(p->primepi(p),factor(n)[,1])); A328219(n) = A290103(A003961(n)); vord_trans = ordinal_transform(vector(up_to,n,A328219(n))); for(n=1,up_to,if(1==vord_trans[n], print1(n,", "))); \\ Antti Karttunen, Oct 18 2019
Comments