A328457 Length of the longest run of divisors > 1 of n.
0, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 3, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 5, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 3, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 1, 1, 2, 1, 2, 1, 1, 1
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..100000
Crossrefs
Records occur at A328448.
Positions of 0's and 1's are A088725.
The version that looks at all divisors (including 1) is A055874.
The number of successive pairs of divisors > 1 of n is A088722(n).
The Heinz number of the multiset of run-lengths of divisors of n is A328166(n).
The longest run of nontrivial divisors of n is A328458(n).
Programs
-
Mathematica
Table[If[n==1,0,Max@@Length/@Split[Rest[Divisors[n]],#2==#1+1&]],{n,100}]
-
PARI
A328457(n) = { my(rl=0,pd=0,m=0); fordiv(n, d, if(d>1, if(d>(1+pd), m = max(m,rl); rl=0); pd=d; rl++)); max(m,rl); }; \\ Antti Karttunen, Feb 23 2023
Extensions
Data section extended up to a(105) by Antti Karttunen, Feb 23 2023