cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A360522 a(n) = Sum_{d|n} Max({d'; d'|n, gcd(d, d') = 1}).

Original entry on oeis.org

1, 3, 4, 6, 6, 12, 8, 11, 11, 18, 12, 24, 14, 24, 24, 20, 18, 33, 20, 36, 32, 36, 24, 44, 27, 42, 30, 48, 30, 72, 32, 37, 48, 54, 48, 66, 38, 60, 56, 66, 42, 96, 44, 72, 66, 72, 48, 80, 51, 81, 72, 84, 54, 90, 72, 88, 80, 90, 60, 144, 62, 96, 88, 70, 84, 144, 68
Offset: 1

Views

Author

Amiram Eldar, Feb 10 2023

Keywords

Comments

a(n) is the sum of delta_d(n) over the divisors d of n, where delta_d(n) is the greatest divisor of n that is relatively prime to n.
Denoted by Sur(n) in Khan (2005).
Related sequences: A048691(n) = Sum_{d|n} #{d'; d' | n, gcd(d, d') = 1}, and A328485(n) = Sum_{d|n} Sum_{d' | n, gcd(d, d') = 1} d' (number and sum of divisors instead of maximal divisor, respectively).

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^e + e; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, f[i,1]^f[i,2] + f[i,2]);}

Formula

Multiplicative with a(p^e) = p^e + e.
Dirichlet g.f.: zeta(s-1)*zeta(s)^2 * Product_{p prime} (1 - 1/p^s - 1/p^(2*s-1) + 1/p^(2*s)).
Sum_{k=1..n} a(k) ~ c * n^2, where c = A072691 * A065465 = A152649 * A330523 = 0.7250160726810604158... .
a(n) <= A000203(n) with equality if and only if n is squarefree (A005117).
limsup_{n->oo} sigma(n)/a(n) = oo, where sigma(n) is the sum of divisors of n (A000203) (Khan, 2002).
liminf_{n->oo} a(n)/usigma(n) = 1, where usigma(n) is the sum of unitary divisors of n (A034448) (Khan, 2005).
limsup_{n->oo} a(n)/usigma(n) = (55/54) * Product_{p prime} (1 + 1/(p^2+1)) = 1.4682298236... (Khan, 2005).

A349770 a(n) = Sum_{d|n} usigma(d) * usigma(n/d).

Original entry on oeis.org

1, 6, 8, 19, 12, 48, 16, 48, 36, 72, 24, 152, 28, 96, 96, 113, 36, 216, 40, 228, 128, 144, 48, 384, 88, 168, 136, 304, 60, 576, 64, 258, 192, 216, 192, 684, 76, 240, 224, 576, 84, 768, 88, 456, 432, 288, 96, 904, 164, 528, 288, 532, 108, 816, 288, 768, 320, 360, 120, 1824
Offset: 1

Views

Author

Ilya Gutkovskiy, Nov 29 2021

Keywords

Comments

Dirichlet convolution of A034448 with itself.

Crossrefs

Programs

  • Mathematica
    usigma[n_] := If[n == 1, 1, Times @@ (1 + Power @@@ FactorInteger[n])]; a[n_] := Sum[usigma[d] usigma[n/d], {d, Divisors[n]}]; Table[a[n], {n, 1, 60}]

Formula

Dirichlet g.f.: ( zeta(s) * zeta(s-1) / zeta(2*s-1) )^2.
Multiplicative with a(p^e) = e * (p^e + 1) + (p+1) * (p^e - 1)/(p-1). - Amiram Eldar, Nov 29 2021
Sum_{k=1..n} a(k) ~ Pi^2 * n^2 / zeta(3)^2 * (Pi^2 * log(n)/72 + gamma * Pi^2/36 - Pi^2/144 + zeta'(2)/6 - Pi^2 * zeta'(3)/(18*zeta(3))), where zeta(3) = A002117, zeta'(2) = -A073002, zeta'(3) = -A244115 and gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Dec 05 2021
Showing 1-2 of 2 results.