cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A328409 Number of inversion sequences of length n where all consecutive subsequences i,j,k satisfy i > j < k or i <= j >= k.

Original entry on oeis.org

1, 1, 2, 3, 6, 16, 57, 245, 1248, 7151, 46104, 325560, 2523437, 21106494, 190806861, 1842347541, 19018910502, 208088481921, 2414462433024, 29512737830802, 380156646308541, 5133381861786182, 72678441538790901, 1074324277172134786, 16581261996774703606
Offset: 0

Views

Author

Alois P. Heinz, Oct 14 2019

Keywords

Examples

			a(0) = 1: the empty sequence.
a(1) = 1: 0.
a(2) = 2: 00, 01.
a(3) = 3: 000, 010, 011.
a(4) = 6: 0000, 0101, 0102, 0103, 0110, 0111.
a(5) = 16: 00000, 01010, 01011, 01020, 01021, 01022, 01030, 01031, 01032, 01033, 01101, 01102, 01103, 01104, 01110, 01111.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, j, t, c) option remember; `if`(n=0, 1, add(`if`((i>j
         xor t) and c=0, 0, b(n-1, i, is(i b(n, 0, true, 2):
    seq(a(n), n=0..24);
  • Mathematica
    b[n_, j_, t_, c_] := b[n, j, t, c] = If[n == 0, 1, Sum[If[Xor[i>j, t] && c == 0, 0, b[n - 1, i, iJean-François Alcover, Feb 26 2020, after Alois P. Heinz *)

Formula

a(n) ~ n! * c * 2^n * n^(Pi/4 - 1/2) / Pi^n, where c = 0.52096414784... - Vaclav Kotesovec, Oct 31 2019

A328425 Number of inversion sequences of length n where all consecutive subsequences i,j,k satisfy i < j > k or i >= j <= k.

Original entry on oeis.org

1, 1, 2, 4, 11, 36, 142, 647, 3383, 19816, 129162, 923279, 7201951, 60720996, 551268926, 5352973967, 55430433719, 609033864160, 7083303687843, 86864585123112, 1120997775904467, 15176639841694385, 215196709973260722, 3187766448289854016, 49262381105608795771
Offset: 0

Views

Author

Alois P. Heinz, Oct 15 2019

Keywords

Examples

			a(0) = 1: the empty sequence.
a(1) = 1: 0.
a(2) = 2: 00, 01.
a(3) = 4: 000, 001, 002, 010.
a(5) = 11: 0000, 0001, 0002, 0003, 0010, 0020, 0021, 0100, 0101, 0102, 0103.
a(6) = 36: 00000, 00001, 00002, 00003, 00004, 00010, 00020, 00021, 00030, 00031, 00032, 00100, 00101, 00102, 00103, 00104, 00200, 00201, 00202, 00203, 00204, 00211, 00212, 00213, 00214, 01000, 01001, 01002, 01003, 01004, 01010, 01020, 01021, 01030, 01031, 01032.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, j, t, c) option remember; `if`(n=0, 1, add(`if`((ij), max(0, c-1))), i=1..n))
        end:
    a:= n-> b(n, 0, true, 2):
    seq(a(n), n=0..24);
  • Mathematica
    b[n_, j_, t_, c_] := b[n, j, t, c] = If[n == 0, 1, Sum[If[Xor[i < j, t] && c == 0, 0, b[n - 1, i, i > j, Max[0, c - 1]]], {i, 1, n}]];
    a[n_] := b[n, 0, True, 2];
    a /@ Range[0, 24] (* Jean-François Alcover, Feb 26 2020, after Alois P. Heinz *)

Formula

a(n) ~ n! * c * 2^n * n^(Pi/4 - 1/2) / Pi^n, where c = 1.60233729528... - Vaclav Kotesovec, Oct 31 2019

A326308 Number of inversion sequences of length n where all consecutive subsequences i,j,k satisfy i > j < k or i < j > k.

Original entry on oeis.org

1, 1, 2, 1, 3, 6, 26, 85, 476, 2171, 14905, 87153, 708825, 5053464, 47514180, 399542814, 4264132468, 41306091312, 493337571005, 5408829555639, 71476985762027, 874870165668858, 12673922434134249, 171294209823727623, 2699365743596908540, 39925463781029750810
Offset: 0

Views

Author

Alois P. Heinz, Oct 17 2019

Keywords

Examples

			a(6) = 26: 010101, 010102, 010103, 010104, 010105, 010201, 010202, 010203, 010204, 010205, 010212, 010213, 010214, 010215, 010301, 010302, 010303, 010304, 010305, 010312, 010313, 010314, 010315, 010323, 010324, 010325.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, j, t, u, c) option remember; `if`(n=0, 1, add(
          `if`(c>0 or i>j and t or ij), max(0, c-1)), 0), i=1..n))
        end:
    a:= n-> b(n, 0, true$2, 2):
    seq(a(n), n=0..25);
  • Mathematica
    b[n_, j_, t_, u_, c_] := b[n, j, t, u, c] = If[n == 0, 1, Sum[If[c>0 || i>j && t || ij, Max[0, c-1]], 0], {i, 1, n}]];
    a[n_] := b[n, 0, True, True, 2];
    a /@ Range[0, 25] (* Jean-François Alcover, Feb 29 2020, after Alois P. Heinz *)

Formula

a(n) ~ n! * c * 2^n / (Pi^n * sqrt(n)), where c = 1.0215796642504649172542599982453320786973706265645819484... - Vaclav Kotesovec, Oct 31 2019

A326412 Number of inversion sequences of length n where all consecutive subsequences i,j,k satisfy i >= j <= k or i <= j >= k.

Original entry on oeis.org

1, 1, 2, 5, 17, 69, 330, 1797, 11028, 74932, 559351, 4540088, 39840318, 375421225, 3782383945, 40548234374, 460956742449, 5536790753853, 70077462043662, 931945968071778, 12993337101354500, 189485727877247991, 2884989393948284323, 45772604755492432599
Offset: 0

Views

Author

Alois P. Heinz, Oct 17 2019

Keywords

Examples

			a(4) = 17: 0000, 0001, 0002, 0003, 0010, 0011, 0020, 0021, 0022, 0100, 0101, 0102, 0103, 0110, 0111, 0112, 0113.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, j, t, u, c) option remember; `if`(n=0, 1, add(
          `if`(c>0 or i>=j and t or i<=j and u, b(n-1, i,
            is(i<=j), is(i>=j), max(0, c-1)), 0), i=1..n))
        end:
    a:= n-> b(n, 0, true$2, 2):
    seq(a(n), n=0..25);
  • Mathematica
    b[n_, j_, t_, u_, c_] := b[n, j, t, u, c] = If[n == 0, 1, Sum[If[c > 0 || i >= j && t || i <= j && u, b[n - 1, i, i <= j,  i >= j , Max[0, c - 1]], 0], {i, 1, n}]];
    a[n_] := b[n, 0, True, True, 2];
    a /@ Range[0, 25] (* Jean-François Alcover, Mar 01 2020, after Alois P. Heinz *)

Formula

a(n) ~ n! * c * 2^n * n^((Pi+1)/2) / Pi^n, where c = 0.0662002484840446134... - Vaclav Kotesovec, Oct 31 2019
Showing 1-4 of 4 results.