A328499 The number of primitive Pythagorean triangles with perimeter less than n.
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7
Offset: 1
Examples
For n=90, the triples are {3, 4, 5}, 3 + 4 + 5 = 12 < 90 {5, 12, 13}, 5 + 12 + 13 = 30 < 90 {7, 24, 25}, 7 + 24 + 25 = 56 < 90 {8, 15, 17}, 8 + 15 + 17 = 40 < 90 {9, 40, 41}, 9 + 40 + 41 = 90 {12, 35, 37}, 12 + 35 + 37 = 84 < 90 {20, 21, 29}, 20 + 21 + 29 = 70 < 90 so a(90)=7.
Links
- Ron Knott, Pythagorean Triples and Online Calculators
- D. N. Lehmer, Asymptotic evaluation of certain totient sums, Amer. J. Math. 22, 293-335, 1900.
Comments