cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A328552 a(n) is the Severi degree for curves of degree n and cogenus 5.

Original entry on oeis.org

0, 0, 0, 378, 90027, 2931831, 33720354, 224710119, 1068797961, 4037126346, 12886585236, 36161763120, 91629683271, 213681907449, 465104644470, 955060713621, 1865654931141, 3490074060228, 6286011239592, 10948910130774, 18510503248611, 30469179410667
Offset: 1

Views

Author

N. J. A. Sloane, Oct 29 2019

Keywords

Comments

All terms are divisible by 9: (a(n)) = 9*(42, 10003, 325759, 3746706, 24967791, ...). Satisfies a linear recurrence with characteristic polynomial (x-1)^11. - M. F. Hasler, Oct 30 2019

Crossrefs

Programs

  • PARI
    {A328552(n,c=[9961, 305795, 2799396, 11895551, 28175817, 40446774, 36208620, 19852560, 6123600, 816480], p=9)=if(n<4,0,sum(k=1,min(#c,n-=4),c[k]*p*=(n-k+1)/k,378))} \\ M. F. Hasler, Oct 30 2019
    
  • PARI
    concat([0, 0, 0], Vec(9*x^4*(42 + 9541*x + 218036*x^2 + 706592*x^3 + 34135*x^4 - 290191*x^5 + 181478*x^6 - 45302*x^7 + 677*x^8 + 1664*x^9 - 192*x^10) / (1 - x)^11 + O(x^40))) \\ Colin Barker, Oct 30 2019

Formula

a(n) = (81/40)*n^10 - (81/4)*n^9 - (27/8)*n^8 + (2349/4)*n^7 - (1044)*n^6 - (127071/20)*n^5 + (128859/8)*n^4 + (59097/2)*n^3 - (3528381/40)*n^2 - (946929/20)*n + 153513 for n > 3.
G.f.: 9*x^4*(42 + 9541*x + 218036*x^2 + 706592*x^3 + 34135*x^4 - 290191*x^5 + 181478*x^6 - 45302*x^7 + 677*x^8 + 1664*x^9 - 192*x^10)/(1 - x)^11. - M. F. Hasler, Oct 30 2019
a(n) = 11*a(n-1) - 55*a(n-2) + 165*a(n-3) - 330*a(n-4) + 462*a(n-5) - 462*a(n-6) + 330*a(n-7) - 165*a(n-8) + 55*a(n-9) - 11*a(n-10) + a(n-11) for n>9. - Colin Barker, Oct 30 2019

Extensions

New name and a(1)=a(2)=a(3)=0 from Andrey Zabolotskiy, Jan 19 2021