cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A171115 Duplicate of A328552.

Original entry on oeis.org

0, 0, 0, 378, 90027, 2931831
Offset: 1

Views

Author

Keywords

A171108 a(n) is the Severi degree for curves of degree n and cogenus 2.

Original entry on oeis.org

0, 0, 21, 225, 882, 2370, 5175, 9891, 17220, 27972, 43065, 63525, 90486, 125190, 168987, 223335, 289800, 370056, 465885, 579177, 711930, 866250, 1044351, 1248555, 1481292, 1745100, 2042625, 2376621, 2749950, 3165582, 3626595, 4136175, 4697616, 5314320
Offset: 1

Views

Author

N. J. A. Sloane, Sep 27 2010

Keywords

Comments

Severi degree N(n, delta) is the number of degree n plane curves which have delta nodes and pass through a generic configuration of n*(n+3)/2-delta points on the plane. delta is called the cogenus of these curves. See Fomin and Mikhalkin (2010), Section 1.2 "Combinatorial rules for Gromov-Witten invariants and Severi degrees" and 5 "Node polynomials". - Andrey Zabolotskiy, Jan 18 2021

Crossrefs

Severi degrees N(n, delta) for other values of delta: A033428(n-1) (1), A171113 (3), A328551 (4), A328552 (5), A171116 (6).

Programs

  • Mathematica
    Table[3(n-1)(n-2)(3n^2-3n-11)/2,{n,40}] (* or *) LinearRecurrence[ {5,-10,10,-5,1},{0,0,21,225,882},40] (* Harvey P. Dale, Feb 01 2013 *)
  • PARI
    concat([0,0], Vec(3*x^3*(7 + 40*x - 11*x^2) / (1 - x)^5 + O(x^40))) \\ Colin Barker, Nov 01 2019

Formula

a(n) = 3*(n-1)*(n-2)*(3*n^2-3*n-11)/2.
a(1)=0, a(2)=0, a(3)=21, a(4)=225, a(5)=882, a(n) = 5*a(n-1)-10*a(n-2)+ 10*a(n-3)-5*a(n-4)+a(n-5). - Harvey P. Dale, Feb 01 2013
G.f.: 3*x^2*(-7-40*x+11*x^2) / (x-1)^5 . - R. J. Mathar, Dec 19 2013

Extensions

New name from Andrey Zabolotskiy, Jan 18 2021

A328551 a(n) is the Severi degree for curves of degree n and cogenus 4.

Original entry on oeis.org

0, 0, 0, 666, 36975, 437517, 2667375, 11225145, 37206936, 104285790, 257991042, 579308220, 1203756165, 2347234131, 4340067705, 7670818467, 13041558390, 21436446060, 34205577876, 53166223470, 80723690667, 120014201385, 175072295955, 251025419421
Offset: 1

Views

Author

N. J. A. Sloane, Oct 27 2019

Keywords

Comments

Setting n=4 gives a(4) = 666, and Vainsencher remarks that "... 666 = 126 + 540 [is] the number of 4-nodal quartics through 10 general points. Indeed, a plane quartic with 4 nodes splits as a union of 2 conics, 126 of which pass through 10 points, or of a singular cubic and a line through 10 points."
All terms are divisible by 3, all but every third by 9. - M. F. Hasler, Oct 30 2019

Crossrefs

Programs

  • PARI
    concat([0, 0, 0], Vec(3*x^4*(222 + 10327*x + 42906*x^2 + 1626*x^3 - 17534*x^4 + 9879*x^5 - 2226*x^6 + 160*x^7) / (1 - x)^9 + O(x^30))) \\ Colin Barker, Oct 28 2019
    
  • PARI
    {A328551(n, c=[222, 11881, 109530, 378831, 632340, 555660, 249480, 45360], p=3)=sum(k=1,min(#c,n-=3), c[k]*p*=(n-k+1)/k)} \\ M. F. Hasler, Oct 30 2019

Formula

a(n) = -8865 + (18057/4)*n + (37881/8)*n^2 - 2529*n^3 - 642*n^4 + (1809/4)*n^5 - 27*n^7 + (27/8)*n^8 for n > 2.
From Colin Barker, Oct 28 2019: (Start)
G.f.: 3*x^4*(222 + 10327*x + 42906*x^2 + 1626*x^3 - 17534*x^4 + 9879*x^5 - 2226*x^6 + 160*x^7) / (1 - x)^9.
a(n) = 9*a(n-1) - 36*a(n-2) + 84*a(n-3) - 126*a(n-4) + 126*a(n-5) - 84*a(n-6) + 36*a(n-7) - 9*a(n-8) + a(n-9) for n>11.
(End)
a(2+3k) == 3 (mod 9), all other a(n) == 0 (mod 9). Periods mod 5, 7, 2 (of length 5, 7, 8): a(3..7 + 5k) == (0, 1, 0, 2, 0) (mod 5). a(3..9 + 7k) == (0, 1, 1, 3, 4, 1, 4) (mod 7). If 1 <= m <= 8, then a(m + 8k) is odd iff m > 4. - M. F. Hasler, Oct 30 2019

Extensions

New name and a(1)=a(2)=0 from Andrey Zabolotskiy, Jan 19 2021

A171113 a(n) is the Severi degree for curves of degree n and cogenus 3.

Original entry on oeis.org

0, 0, 15, 675, 7915, 41310, 145383, 404185, 959115, 2029980, 3939295, 7139823, 12245355, 20064730, 31639095, 48282405, 71625163, 103661400, 146798895, 203912635, 278401515, 374248278, 496082695, 649247985, 839870475, 1074932500, 1362348543, 1711044615
Offset: 1

Views

Author

N. J. A. Sloane, Sep 27 2010

Keywords

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{7,-21,35,-35,21,-7,1},{0,0,15,675,7915,41310,145383,404185,959115},30] (* Harvey P. Dale, Jun 15 2021 *)
  • Python
    [0, 0] + [(9*d**6 + 9*d**4 + 423*d**3 - 829*d)//2 - 27*d**5 - 229*d**2 + 525 for d in range(3, 30)] # Andrey Zabolotskiy, Jan 12 2021

Formula

a(n) = 9*n^6/2 - 27*n^5 + 9*n^4/2 + 423*n^3/2 - 229*n^2 - 829*n/2 + 525 for n > 2. - Andrey Zabolotskiy, Jan 19 2021

Extensions

Terms a(7) and beyond from Andrey Zabolotskiy, Jan 12 2021
Showing 1-4 of 4 results.