A171108 a(n) is the Severi degree for curves of degree n and cogenus 2.
0, 0, 21, 225, 882, 2370, 5175, 9891, 17220, 27972, 43065, 63525, 90486, 125190, 168987, 223335, 289800, 370056, 465885, 579177, 711930, 866250, 1044351, 1248555, 1481292, 1745100, 2042625, 2376621, 2749950, 3165582, 3626595, 4136175, 4697616, 5314320
Offset: 1
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- Florian Block, Computing node polynomials for plane curves, arXiv:1006.0218 [math.AG], 2010-2011; Math. Res. Lett. 18, (2011), no. 4, 621-643.
- Florian Block, Susan Jane Colley, and Gary Kennedy, Computing Severi degrees with long-edge graphs, Bulletin of the Brazilian Mathematical Society, New Series 45.4 (2014): 625-647. Also arXiv:1303.5308 [math.AG], 2013 (see first page).
- Sergey Fomin and Grigory Mikhalkin, Labeled floor diagrams for plane curves, Journal of the European Mathematical Society 012.6 (2010): 1453-1496; arXiv:0906.3828 [math.AG], 2009-2010.
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
Crossrefs
Programs
-
Mathematica
Table[3(n-1)(n-2)(3n^2-3n-11)/2,{n,40}] (* or *) LinearRecurrence[ {5,-10,10,-5,1},{0,0,21,225,882},40] (* Harvey P. Dale, Feb 01 2013 *)
-
PARI
concat([0,0], Vec(3*x^3*(7 + 40*x - 11*x^2) / (1 - x)^5 + O(x^40))) \\ Colin Barker, Nov 01 2019
Formula
a(n) = 3*(n-1)*(n-2)*(3*n^2-3*n-11)/2.
a(1)=0, a(2)=0, a(3)=21, a(4)=225, a(5)=882, a(n) = 5*a(n-1)-10*a(n-2)+ 10*a(n-3)-5*a(n-4)+a(n-5). - Harvey P. Dale, Feb 01 2013
G.f.: 3*x^2*(-7-40*x+11*x^2) / (x-1)^5 . - R. J. Mathar, Dec 19 2013
Extensions
New name from Andrey Zabolotskiy, Jan 18 2021
Comments