Original entry on oeis.org
0, 0, 21, 225, 882, 2370
Offset: 1
A328551
a(n) is the Severi degree for curves of degree n and cogenus 4.
Original entry on oeis.org
0, 0, 0, 666, 36975, 437517, 2667375, 11225145, 37206936, 104285790, 257991042, 579308220, 1203756165, 2347234131, 4340067705, 7670818467, 13041558390, 21436446060, 34205577876, 53166223470, 80723690667, 120014201385, 175072295955, 251025419421
Offset: 1
- Colin Barker, Table of n, a(n) for n = 1..1000
- Florian Block, Computing node polynomials for plane curves, arXiv:1006.0218 [math.AG], 2010-2011; Math. Res. Lett. 18, (2011), no. 4, 621-643.
- Florian Block, Susan Jane Colley, and Gary Kennedy, Computing Severi degrees with long-edge graphs, Bulletin of the Brazilian Mathematical Society, New Series 45.4 (2014): 625-647. Also arXiv:1303.5308 [math.AG], 2013.
- Sergey Fomin and Grigory Mikhalkin, Labeled floor diagrams for plane curves, Journal of the European Mathematical Society 012.6 (2010): 1453-1496; arXiv:0906.3828 [math.AG], 2009-2010.
- Israel Vainsencher, Enumeration of n-fold tangent hyperplanes to a surface, arXiv:alg-geom/9312012, 1993-1994; J. Algebraic Geom., 4 (1995), 503-526. See Section 5.1.1.
- Index entries for linear recurrences with constant coefficients, signature (9,-36,84,-126,126,-84,36,-9,1).
-
concat([0, 0, 0], Vec(3*x^4*(222 + 10327*x + 42906*x^2 + 1626*x^3 - 17534*x^4 + 9879*x^5 - 2226*x^6 + 160*x^7) / (1 - x)^9 + O(x^30))) \\ Colin Barker, Oct 28 2019
-
{A328551(n, c=[222, 11881, 109530, 378831, 632340, 555660, 249480, 45360], p=3)=sum(k=1,min(#c,n-=3), c[k]*p*=(n-k+1)/k)} \\ M. F. Hasler, Oct 30 2019
A328552
a(n) is the Severi degree for curves of degree n and cogenus 5.
Original entry on oeis.org
0, 0, 0, 378, 90027, 2931831, 33720354, 224710119, 1068797961, 4037126346, 12886585236, 36161763120, 91629683271, 213681907449, 465104644470, 955060713621, 1865654931141, 3490074060228, 6286011239592, 10948910130774, 18510503248611, 30469179410667
Offset: 1
- Colin Barker, Table of n, a(n) for n = 1..1000
- Florian Block, Computing node polynomials for plane curves, arXiv:1006.0218 [math.AG], 2010-2011; Math. Res. Lett. 18, (2011), no. 4, 621-643.
- Sergey Fomin and Grigory Mikhalkin, Labeled floor diagrams for plane curves, Journal of the European Mathematical Society 012.6 (2010): 1453-1496; arXiv:0906.3828 [math.AG], 2009-2010.
- Israel Vainsencher, Enumeration of n-fold tangent hyperplanes to a surface, arXiv preprint alg-geom/9312012, 1993-1994; J. Algebraic Geom., 4 (1995), 503-526. See Section 5.1.2.
- Index entries for linear recurrences with constant coefficients, signature (11,-55,165,-330,462,-462,330,-165,55,-11,1).
-
{A328552(n,c=[9961, 305795, 2799396, 11895551, 28175817, 40446774, 36208620, 19852560, 6123600, 816480], p=9)=if(n<4,0,sum(k=1,min(#c,n-=4),c[k]*p*=(n-k+1)/k,378))} \\ M. F. Hasler, Oct 30 2019
-
concat([0, 0, 0], Vec(9*x^4*(42 + 9541*x + 218036*x^2 + 706592*x^3 + 34135*x^4 - 290191*x^5 + 181478*x^6 - 45302*x^7 + 677*x^8 + 1664*x^9 - 192*x^10) / (1 - x)^11 + O(x^40))) \\ Colin Barker, Oct 30 2019
A171113
a(n) is the Severi degree for curves of degree n and cogenus 3.
Original entry on oeis.org
0, 0, 15, 675, 7915, 41310, 145383, 404185, 959115, 2029980, 3939295, 7139823, 12245355, 20064730, 31639095, 48282405, 71625163, 103661400, 146798895, 203912635, 278401515, 374248278, 496082695, 649247985, 839870475, 1074932500, 1362348543, 1711044615
Offset: 1
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
- Florian Block, Computing node polynomials for plane curves, arXiv:1006.0218 [math.AG], 2010-2011; Math. Res. Lett. 18, (2011), no. 4, 621-643.
- Florian Block, Susan Jane Colley, and Gary Kennedy, Computing Severi degrees with long-edge graphs, Bulletin of the Brazilian Mathematical Society, New Series 45.4 (2014): 625-647. Also arXiv:1303.5308 [math.AG], 2013 (see first page).
- P. Di Francesco and C. Itzykson, Quantum Intersection Rings, in: The Moduli Space of Curves, Birkhäuser Boston, 1995; on arXiv, arXiv:hep-th/9412175, 1994. See Proposition 2 (iii) and the following Remark (a).
- Sergey Fomin and Grigory Mikhalkin, Labeled floor diagrams for plane curves, Journal of the European Mathematical Society 012.6 (2010): 1453-1496; arXiv:0906.3828 [math.AG], 2009-2010.
- Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1).
-
LinearRecurrence[{7,-21,35,-35,21,-7,1},{0,0,15,675,7915,41310,145383,404185,959115},30] (* Harvey P. Dale, Jun 15 2021 *)
-
[0, 0] + [(9*d**6 + 9*d**4 + 423*d**3 - 829*d)//2 - 27*d**5 - 229*d**2 + 525 for d in range(3, 30)] # Andrey Zabolotskiy, Jan 12 2021
A171116
a(n) is the Severi degree for curves of degree n and cogenus 6.
Original entry on oeis.org
0, 0, 0, 105, 109781, 12597900, 302280963, 3356773532, 23599355991, 122416062018, 510681301550, 1807308075111, 5622246678741, 15761274284852, 40547443860105, 97044388890450, 218379097055159, 465931135430250, 948922558475388, 1854955331788517, 3496355565562725
Offset: 1
- Sergey Fomin and Grigory Mikhalkin, Labeled floor diagrams for plane curves, Journal of the European Mathematical Society 012.6 (2010): 1453-1496; arXiv:0906.3828 [math.AG], 2009-2010.
- Index entries for linear recurrences with constant coefficients, signature (13,-78,286,-715,1287,-1716,1716,-1287,715,-286,78,-13,1).
-
a[n_ ? (#<4&)] = 0;
a[n_] := 81/80 n^12 - 243/20 n^11 - 81/20 n^10 + 8667/16 n^9 - 9297/8 n^8 - 47727/5 n^7 + 2458629/80 n^6 + 3243249/40 n^5 - 6577679/20 n^4 - 25387481/80 n^3 + 6352577/4 n^2 + 8290623/20 n - 2699706;
Table[a[n], {n, 20}] (* Andrey Zabolotskiy, May 02 2022 *)
A171105
Multicomponent Gromov-Witten invariants for genus 0.
Original entry on oeis.org
1, 1, 12, 675, 109781, 40047888
Offset: 1
Showing 1-6 of 6 results.
Comments