cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A171112 Duplicate of A171108.

Original entry on oeis.org

0, 0, 21, 225, 882, 2370
Offset: 1

Views

Author

Keywords

A328551 a(n) is the Severi degree for curves of degree n and cogenus 4.

Original entry on oeis.org

0, 0, 0, 666, 36975, 437517, 2667375, 11225145, 37206936, 104285790, 257991042, 579308220, 1203756165, 2347234131, 4340067705, 7670818467, 13041558390, 21436446060, 34205577876, 53166223470, 80723690667, 120014201385, 175072295955, 251025419421
Offset: 1

Views

Author

N. J. A. Sloane, Oct 27 2019

Keywords

Comments

Setting n=4 gives a(4) = 666, and Vainsencher remarks that "... 666 = 126 + 540 [is] the number of 4-nodal quartics through 10 general points. Indeed, a plane quartic with 4 nodes splits as a union of 2 conics, 126 of which pass through 10 points, or of a singular cubic and a line through 10 points."
All terms are divisible by 3, all but every third by 9. - M. F. Hasler, Oct 30 2019

Crossrefs

Programs

  • PARI
    concat([0, 0, 0], Vec(3*x^4*(222 + 10327*x + 42906*x^2 + 1626*x^3 - 17534*x^4 + 9879*x^5 - 2226*x^6 + 160*x^7) / (1 - x)^9 + O(x^30))) \\ Colin Barker, Oct 28 2019
    
  • PARI
    {A328551(n, c=[222, 11881, 109530, 378831, 632340, 555660, 249480, 45360], p=3)=sum(k=1,min(#c,n-=3), c[k]*p*=(n-k+1)/k)} \\ M. F. Hasler, Oct 30 2019

Formula

a(n) = -8865 + (18057/4)*n + (37881/8)*n^2 - 2529*n^3 - 642*n^4 + (1809/4)*n^5 - 27*n^7 + (27/8)*n^8 for n > 2.
From Colin Barker, Oct 28 2019: (Start)
G.f.: 3*x^4*(222 + 10327*x + 42906*x^2 + 1626*x^3 - 17534*x^4 + 9879*x^5 - 2226*x^6 + 160*x^7) / (1 - x)^9.
a(n) = 9*a(n-1) - 36*a(n-2) + 84*a(n-3) - 126*a(n-4) + 126*a(n-5) - 84*a(n-6) + 36*a(n-7) - 9*a(n-8) + a(n-9) for n>11.
(End)
a(2+3k) == 3 (mod 9), all other a(n) == 0 (mod 9). Periods mod 5, 7, 2 (of length 5, 7, 8): a(3..7 + 5k) == (0, 1, 0, 2, 0) (mod 5). a(3..9 + 7k) == (0, 1, 1, 3, 4, 1, 4) (mod 7). If 1 <= m <= 8, then a(m + 8k) is odd iff m > 4. - M. F. Hasler, Oct 30 2019

Extensions

New name and a(1)=a(2)=0 from Andrey Zabolotskiy, Jan 19 2021

A328552 a(n) is the Severi degree for curves of degree n and cogenus 5.

Original entry on oeis.org

0, 0, 0, 378, 90027, 2931831, 33720354, 224710119, 1068797961, 4037126346, 12886585236, 36161763120, 91629683271, 213681907449, 465104644470, 955060713621, 1865654931141, 3490074060228, 6286011239592, 10948910130774, 18510503248611, 30469179410667
Offset: 1

Views

Author

N. J. A. Sloane, Oct 29 2019

Keywords

Comments

All terms are divisible by 9: (a(n)) = 9*(42, 10003, 325759, 3746706, 24967791, ...). Satisfies a linear recurrence with characteristic polynomial (x-1)^11. - M. F. Hasler, Oct 30 2019

Crossrefs

Programs

  • PARI
    {A328552(n,c=[9961, 305795, 2799396, 11895551, 28175817, 40446774, 36208620, 19852560, 6123600, 816480], p=9)=if(n<4,0,sum(k=1,min(#c,n-=4),c[k]*p*=(n-k+1)/k,378))} \\ M. F. Hasler, Oct 30 2019
    
  • PARI
    concat([0, 0, 0], Vec(9*x^4*(42 + 9541*x + 218036*x^2 + 706592*x^3 + 34135*x^4 - 290191*x^5 + 181478*x^6 - 45302*x^7 + 677*x^8 + 1664*x^9 - 192*x^10) / (1 - x)^11 + O(x^40))) \\ Colin Barker, Oct 30 2019

Formula

a(n) = (81/40)*n^10 - (81/4)*n^9 - (27/8)*n^8 + (2349/4)*n^7 - (1044)*n^6 - (127071/20)*n^5 + (128859/8)*n^4 + (59097/2)*n^3 - (3528381/40)*n^2 - (946929/20)*n + 153513 for n > 3.
G.f.: 9*x^4*(42 + 9541*x + 218036*x^2 + 706592*x^3 + 34135*x^4 - 290191*x^5 + 181478*x^6 - 45302*x^7 + 677*x^8 + 1664*x^9 - 192*x^10)/(1 - x)^11. - M. F. Hasler, Oct 30 2019
a(n) = 11*a(n-1) - 55*a(n-2) + 165*a(n-3) - 330*a(n-4) + 462*a(n-5) - 462*a(n-6) + 330*a(n-7) - 165*a(n-8) + 55*a(n-9) - 11*a(n-10) + a(n-11) for n>9. - Colin Barker, Oct 30 2019

Extensions

New name and a(1)=a(2)=a(3)=0 from Andrey Zabolotskiy, Jan 19 2021

A171113 a(n) is the Severi degree for curves of degree n and cogenus 3.

Original entry on oeis.org

0, 0, 15, 675, 7915, 41310, 145383, 404185, 959115, 2029980, 3939295, 7139823, 12245355, 20064730, 31639095, 48282405, 71625163, 103661400, 146798895, 203912635, 278401515, 374248278, 496082695, 649247985, 839870475, 1074932500, 1362348543, 1711044615
Offset: 1

Views

Author

N. J. A. Sloane, Sep 27 2010

Keywords

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{7,-21,35,-35,21,-7,1},{0,0,15,675,7915,41310,145383,404185,959115},30] (* Harvey P. Dale, Jun 15 2021 *)
  • Python
    [0, 0] + [(9*d**6 + 9*d**4 + 423*d**3 - 829*d)//2 - 27*d**5 - 229*d**2 + 525 for d in range(3, 30)] # Andrey Zabolotskiy, Jan 12 2021

Formula

a(n) = 9*n^6/2 - 27*n^5 + 9*n^4/2 + 423*n^3/2 - 229*n^2 - 829*n/2 + 525 for n > 2. - Andrey Zabolotskiy, Jan 19 2021

Extensions

Terms a(7) and beyond from Andrey Zabolotskiy, Jan 12 2021

A171116 a(n) is the Severi degree for curves of degree n and cogenus 6.

Original entry on oeis.org

0, 0, 0, 105, 109781, 12597900, 302280963, 3356773532, 23599355991, 122416062018, 510681301550, 1807308075111, 5622246678741, 15761274284852, 40547443860105, 97044388890450, 218379097055159, 465931135430250, 948922558475388, 1854955331788517, 3496355565562725
Offset: 1

Views

Author

N. J. A. Sloane, Sep 27 2010

Keywords

Crossrefs

Cf. A171108.

Programs

  • Mathematica
    a[n_ ? (#<4&)] = 0;
    a[n_] := 81/80 n^12 - 243/20 n^11 - 81/20 n^10 + 8667/16 n^9 - 9297/8 n^8 - 47727/5 n^7 + 2458629/80 n^6 + 3243249/40 n^5 - 6577679/20 n^4 - 25387481/80 n^3 + 6352577/4 n^2 + 8290623/20 n - 2699706;
    Table[a[n], {n, 20}] (* Andrey Zabolotskiy, May 02 2022 *)

Extensions

Name edited, terms a(7) and beyond added by Andrey Zabolotskiy, May 02 2022

A171105 Multicomponent Gromov-Witten invariants for genus 0.

Original entry on oeis.org

1, 1, 12, 675, 109781, 40047888
Offset: 1

Views

Author

N. J. A. Sloane, Sep 27 2010

Keywords

Comments

In this entry and in A171104, a multicomponent Gromov-Witten invariant is the number of (possibly reducible, hence "multicomponent") curves in CP^2 of degree n and genus g passing through given 3n-1+g points, so this is the Severi degree N(n, delta) where cogenus delta = (n-1)*(n-2)/2 - g, cf. A171108 and references therein. In particular, a(5) = A171116(5). - Andrey Zabolotskiy, May 04 2022

Crossrefs

Cf. Gromov-Witten invariants, counting irreducible curves only: A171109, A171110, A171111.

Extensions

a(5)-a(6) added by Andrey Zabolotskiy, May 04 2022
Showing 1-6 of 6 results.