cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A328556 Expansion of Product_{p prime, k>=1} (1 - x^(p^k)).

Original entry on oeis.org

1, 0, -1, -1, -1, 0, 1, 1, 0, 0, 1, 1, 1, 0, -1, -1, -2, -1, 0, 0, 1, 1, 0, -1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, -3, -3, -1, 1, 1, 0, -1, -1, 2, 2, 0, 1, -1, 0, 1, 0, -1, 0, 1, 0, 0, -2, -3, -1, -1, 0, 2, 0, 1, 3, 0, 1, 3, 1, -3, -2, -3, -2, 3, 2, -1, 0, -2, 1, 1, -2, -1, 1, 2, 2, 3, -1, -2, 4
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 01 2019

Keywords

Comments

Convolution inverse of A023894.
The difference between the number of partitions of n into an even number of distinct prime power parts and the number of partitions of n into an odd number of distinct prime power parts (1 excluded).
Conjecture: the last zero (38th) occurs at n = 340.

Crossrefs

Programs

  • Maple
    N:= 100: # for a(0)..a(N)
    R:= 1:
    p:= 1:
    do
      p:= nextprime(p);
      if p > N then break fi;
      for k from 1 to floor(log[p](N)) do
        R:= series(R*(1-x^(p^k)),x,N+1)
      od;
    od:
    seq(coeff(R,x,j),j=0..N); # Robert Israel, Nov 03 2019
  • Mathematica
    nmax = 90; CoefficientList[Series[Product[(1 - Boole[PrimePowerQ[k]] x^k), {k, 1, nmax}], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, -Sum[Sum[Boole[PrimePowerQ[d]] d, {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 90}]

Formula

G.f.: Product_{k>=1} (1 - x^A246655(k)).