A328568 Irregular triangle read by rows; for n >= 0, the n-th row corresponds to the elements of the set {(n-k) XOR k, k = 0..n}, in ascending order (where XOR denotes the bitwise XOR operator).
0, 1, 0, 2, 3, 0, 2, 4, 1, 5, 0, 4, 6, 7, 0, 4, 6, 8, 1, 5, 9, 0, 2, 4, 8, 10, 3, 11, 0, 2, 8, 10, 12, 1, 9, 13, 0, 8, 12, 14, 15, 0, 8, 12, 14, 16, 1, 9, 13, 17, 0, 2, 8, 10, 12, 16, 18, 3, 11, 19, 0, 2, 4, 8, 10, 16, 18, 20, 1, 5, 9, 17, 21, 0, 4, 6, 8, 16, 20, 22
Offset: 0
Examples
Table begins: 0; 1; 0, 2; 3; 0, 2, 4; 1, 5; 0, 4, 6; 7; 0, 4, 6, 8; 1, 5, 9; 0, 2, 4, 8, 10; 3, 11; 0, 2, 8, 10, 12; 1, 9, 13; 0, 8, 12, 14; ...
Links
- Rémy Sigrist, Table of n, a(n) for n = 0..9851
Programs
-
Maple
T:= n-> sort([{seq(Bits[Xor](n-k, k), k=0..n)}[]])[]: seq(T(n), n=0..30); # Alois P. Heinz, Oct 20 2019
-
Mathematica
Union /@ Table[BitXor[n - k, k], {n, 0, 22}, {k, 0, n}] // Flatten (* George Beck, Jun 09 2023 *)
-
PARI
row(n) = Set(apply(k -> bitxor(n-k, k), [0..n]))
Comments