cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A328569 Exponent of least prime factor in A276086(A276086(n)), where A276086 converts the primorial base expansion of n into its prime product form.

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 1, 2, 1, 1, 1, 3, 1, 1, 1, 5, 1, 1, 1, 2, 1, 4, 1, 5, 1, 1, 1, 6, 1, 4, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 5, 1, 4, 1, 2, 1, 3, 1, 9, 1, 1, 1, 4, 1, 1, 1, 1, 1, 4, 1, 2, 1, 2, 1, 7, 1, 10, 1, 1, 1, 2, 1, 6, 1, 2, 1, 10, 1, 8, 1, 1, 1, 6, 1, 7, 1, 1, 1, 3, 1, 4, 1, 2, 1, 5, 1, 4, 1, 1, 1, 3
Offset: 0

Views

Author

Antti Karttunen, Oct 20 2019

Keywords

Comments

Equally, the least significant nonzero digit in primorial base expansion of A276086(n).

Crossrefs

Programs

  • PARI
    A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
    A276088(n) = { my(e=0, p=2); while(n && !(e=(n%p)), n = n/p; p = nextprime(1+p)); (e); };
    A328569(n) = A276088(A276086(n));

Formula

a(n) = A276088(A276086(n)) = A067029(A276087(n)).
max(a(n),1+A051903(A328400(A003557(A276086(A328476(n)))))) = A328389(n). [A328400 is optional in the formula]
For all even n, a(n) < A328579(n).