cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A328596 Numbers whose reversed binary expansion is a Lyndon word (aperiodic necklace).

Original entry on oeis.org

1, 2, 4, 6, 8, 12, 14, 16, 20, 24, 26, 28, 30, 32, 40, 44, 48, 52, 56, 58, 60, 62, 64, 72, 80, 84, 88, 92, 96, 100, 104, 106, 108, 112, 116, 118, 120, 122, 124, 126, 128, 144, 152, 160, 164, 168, 172, 176, 180, 184, 188, 192, 200, 208, 212, 216, 218, 220, 224
Offset: 1

Views

Author

Gus Wiseman, Oct 22 2019

Keywords

Comments

First differs from A091065 in lacking 50.
A Lyndon word is a finite sequence that is lexicographically strictly less than all of its cyclic rotations.

Examples

			The sequence of terms together with their binary expansions and binary indices begins:
   1:      1 ~ {1}
   2:     10 ~ {2}
   4:    100 ~ {3}
   6:    110 ~ {2,3}
   8:   1000 ~ {4}
  12:   1100 ~ {3,4}
  14:   1110 ~ {2,3,4}
  16:  10000 ~ {5}
  20:  10100 ~ {3,5}
  24:  11000 ~ {4,5}
  26:  11010 ~ {2,4,5}
  28:  11100 ~ {3,4,5}
  30:  11110 ~ {2,3,4,5}
  32: 100000 ~ {6}
  40: 101000 ~ {4,6}
  44: 101100 ~ {3,4,6}
  48: 110000 ~ {5,6}
  52: 110100 ~ {3,5,6}
  56: 111000 ~ {4,5,6}
  58: 111010 ~ {2,4,5,6}
		

Crossrefs

A similar concept is A275692.
Aperiodic words are A328594.
Necklaces are A328595.
Binary Lyndon words are A001037.
Lyndon compositions are A059966.

Programs

  • Mathematica
    aperQ[q_]:=Array[RotateRight[q,#]&,Length[q],1,UnsameQ];
    neckQ[q_]:=Array[OrderedQ[{q,RotateRight[q,#]}]&,Length[q]-1,1,And];
    Select[Range[100],aperQ[Reverse[IntegerDigits[#,2]]]&&neckQ[Reverse[IntegerDigits[#,2]]]&]

Formula

Intersection of A328594 and A328595.