A328597 Number of necklace compositions of n where every pair of adjacent parts (including the last with the first) is relatively prime.
1, 1, 2, 3, 5, 8, 12, 21, 33, 57, 94, 167, 279, 491, 852, 1507, 2647, 4714, 8349, 14923, 26642, 47793, 85778, 154474, 278322, 502715, 908912, 1646205, 2984546, 5418652, 9847189, 17916000, 32625617, 59470539, 108493149, 198094482, 361965238, 661891579, 1211162270
Offset: 1
Keywords
Examples
The a(1) = 1 through a(7) = 12 necklace compositions: (1) (1,1) (1,2) (1,3) (1,4) (1,5) (1,6) (1,1,1) (1,1,2) (2,3) (1,1,4) (2,5) (1,1,1,1) (1,1,3) (1,2,3) (3,4) (1,1,1,2) (1,3,2) (1,1,5) (1,1,1,1,1) (1,1,1,3) (1,1,1,4) (1,2,1,2) (1,1,2,3) (1,1,1,1,2) (1,1,3,2) (1,1,1,1,1,1) (1,2,1,3) (1,1,1,1,3) (1,1,2,1,2) (1,1,1,1,1,2) (1,1,1,1,1,1,1)
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..200
Crossrefs
The non-necklace version is A328609.
The non-necklace non-circular version is A167606.
The version with singletons is A318728.
The aperiodic case is A318745.
The indivisible (instead of coprime) version is A328600.
The non-coprime (instead of coprime) version is A328602.
Necklace compositions are A008965.
Programs
-
Mathematica
neckQ[q_]:=Array[OrderedQ[{q,RotateRight[q,#]}]&,Length[q]-1,1,And]; Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],neckQ[#]&&And@@CoprimeQ@@@Partition[#,2,1,1]&]],{n,10}]
-
PARI
b(n, q, pred)={my(M=matrix(n, n)); for(k=1, n, M[k, k]=pred(q, k); for(i=1, k-1, M[i, k]=sum(j=1, k-i, if(pred(j, i), M[j, k-i], 0)))); M[q,]} seq(n)={my(v=sum(k=1, n, k*b(n, k, (i,j)->gcd(i,j)==1))); vector(n, n, sumdiv(n, d, eulerphi(d)*v[n/d])/n)} \\ Andrew Howroyd, Oct 26 2019
Formula
a(n > 1) = A318728(n) - 1.
Extensions
Terms a(21) and beyond from Andrew Howroyd, Oct 26 2019
Comments