cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A328597 Number of necklace compositions of n where every pair of adjacent parts (including the last with the first) is relatively prime.

Original entry on oeis.org

1, 1, 2, 3, 5, 8, 12, 21, 33, 57, 94, 167, 279, 491, 852, 1507, 2647, 4714, 8349, 14923, 26642, 47793, 85778, 154474, 278322, 502715, 908912, 1646205, 2984546, 5418652, 9847189, 17916000, 32625617, 59470539, 108493149, 198094482, 361965238, 661891579, 1211162270
Offset: 1

Views

Author

Gus Wiseman, Oct 23 2019

Keywords

Comments

A necklace composition of n is a finite sequence of positive integers summing to n that is lexicographically minimal among all of its cyclic rotations.

Examples

			The a(1) = 1 through a(7) = 12 necklace compositions:
  (1)  (1,1)  (1,2)    (1,3)      (1,4)        (1,5)          (1,6)
              (1,1,1)  (1,1,2)    (2,3)        (1,1,4)        (2,5)
                       (1,1,1,1)  (1,1,3)      (1,2,3)        (3,4)
                                  (1,1,1,2)    (1,3,2)        (1,1,5)
                                  (1,1,1,1,1)  (1,1,1,3)      (1,1,1,4)
                                               (1,2,1,2)      (1,1,2,3)
                                               (1,1,1,1,2)    (1,1,3,2)
                                               (1,1,1,1,1,1)  (1,2,1,3)
                                                              (1,1,1,1,3)
                                                              (1,1,2,1,2)
                                                              (1,1,1,1,1,2)
                                                              (1,1,1,1,1,1,1)
		

Crossrefs

The non-necklace version is A328609.
The non-necklace non-circular version is A167606.
The version with singletons is A318728.
The aperiodic case is A318745.
The indivisible (instead of coprime) version is A328600.
The non-coprime (instead of coprime) version is A328602.
Necklace compositions are A008965.

Programs

  • Mathematica
    neckQ[q_]:=Array[OrderedQ[{q,RotateRight[q,#]}]&,Length[q]-1,1,And];
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],neckQ[#]&&And@@CoprimeQ@@@Partition[#,2,1,1]&]],{n,10}]
  • PARI
    b(n, q, pred)={my(M=matrix(n, n)); for(k=1, n, M[k, k]=pred(q, k); for(i=1, k-1, M[i, k]=sum(j=1, k-i, if(pred(j, i), M[j, k-i], 0)))); M[q,]}
    seq(n)={my(v=sum(k=1, n, k*b(n, k, (i,j)->gcd(i,j)==1))); vector(n, n, sumdiv(n, d, eulerphi(d)*v[n/d])/n)} \\ Andrew Howroyd, Oct 26 2019

Formula

a(n > 1) = A318728(n) - 1.

Extensions

Terms a(21) and beyond from Andrew Howroyd, Oct 26 2019