A328614 Number of 1-digits in primorial base expansion of n.
0, 1, 1, 2, 0, 1, 1, 2, 2, 3, 1, 2, 0, 1, 1, 2, 0, 1, 0, 1, 1, 2, 0, 1, 0, 1, 1, 2, 0, 1, 1, 2, 2, 3, 1, 2, 2, 3, 3, 4, 2, 3, 1, 2, 2, 3, 1, 2, 1, 2, 2, 3, 1, 2, 1, 2, 2, 3, 1, 2, 0, 1, 1, 2, 0, 1, 1, 2, 2, 3, 1, 2, 0, 1, 1, 2, 0, 1, 0, 1, 1, 2, 0, 1, 0, 1, 1, 2, 0, 1, 0, 1, 1, 2, 0, 1, 1, 2, 2, 3, 1, 2, 0, 1, 1, 2
Offset: 0
Examples
In primorial base (A049345), 87 is written as "2411" because 87 = 2*A002110(3) + 4*A002110(2) + 1*A002110(1) + 1*A002110(0) = 2*30 + 4*6 + 1*2 + 1*1. Only two of these digits are "1"'s, thus a(87) = 2.
Links
Crossrefs
Programs
-
Mathematica
a[n_] := Module[{k = n, p = 2, s = 0, r}, While[{k, r} = QuotientRemainder[k, p]; k != 0 || r != 0, If[r == 1, s++]; p = NextPrime[p]]; s]; Array[a, 100, 0] (* Amiram Eldar, Mar 13 2024 *)
-
PARI
A328614(n) = { my(s=0, p=2); while(n, s += (1==(n%p)); n = n\p; p = nextprime(1+p)); (s); };