A328618 Multiplicative with a(p^e) = p^e if p = 2 or e is a multiple of p, otherwise a(p^e) = p^((p*floor(e/p)) + (2e mod p)).
1, 2, 9, 4, 25, 18, 49, 8, 3, 50, 121, 36, 169, 98, 225, 16, 289, 6, 361, 100, 441, 242, 529, 72, 625, 338, 27, 196, 841, 450, 961, 32, 1089, 578, 1225, 12, 1369, 722, 1521, 200, 1681, 882, 1849, 484, 75, 1058, 2209, 144, 2401, 1250, 2601, 676, 2809, 54, 3025, 392, 3249, 1682, 3481, 900, 3721, 1922, 147, 64, 4225, 2178, 4489, 1156, 4761, 2450, 5041, 24
Offset: 1
Links
Programs
-
Mathematica
a[n_] := Product[{p, e} = pe; If[p == 2 || Divisible[e, p], p^e, p^((p*Floor[e/p]) + Mod[2e, p])], {pe, FactorInteger[n]}]; Array[a, 100] (* Jean-François Alcover, Nov 21 2021 *)
-
PARI
A328618(n) = { my(f = factor(n), m, q); for(k=1, #f~, q = (f[k, 2]\f[k, 1]); m = (f[k, 2]%f[k, 1]); if(m&&(f[k,1]!=2), f[k, 2] = q*f[k, 1] + ((2*f[k, 2])%f[k, 1]))); factorback(f); };