cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A328625 In primorial base representation of n, multiply all other digits except the least significant with 1+{their right hand side neighbor}, and reduce each modulo prime(k) (with k > 1) to get a new digit for the position k (the least significant digit stays as it is), then convert back to decimal.

Original entry on oeis.org

0, 1, 2, 5, 4, 3, 6, 7, 14, 17, 22, 21, 12, 13, 26, 29, 10, 9, 18, 19, 8, 11, 28, 27, 24, 25, 20, 23, 16, 15, 30, 31, 32, 35, 34, 33, 66, 67, 74, 77, 82, 81, 102, 103, 116, 119, 100, 99, 138, 139, 128, 131, 148, 147, 174, 175, 170, 173, 166, 165, 60, 61, 62, 65, 64, 63, 126, 127, 134, 137, 142, 141, 192, 193, 206, 209, 190, 189, 48, 49, 38, 41, 58, 57, 114
Offset: 0

Views

Author

Antti Karttunen, Oct 23 2019

Keywords

Comments

In primorial base (see A049345) we keep the least significant digit (0 or 1) intact, and replace each digit d(i) left of that (for i >= 2) with a new digit value computed as d(i)*(1+d(i-1)) mod prime(i). a(n) is then the newly constructed primorial expansion converted back to decimal.
Because for all primes p, Z_p is a field (not just a ring), this sequence is a permutation of nonnegative integers, and roughly speaking, offers a kind of analog of A003188 for primorial base system. Note however that it is the digit neighbor on the right (not left) hand side that affects here what will be the new digit at each position.

Examples

			In primorial base (A049345) 199 is written as "6301" because 6*A002110(3) + 3*A002110(2) + 0*A002110(1) + 1*A002110(0) = 6*30 + 3*6 + 0*2 + 1*1 = 199. Multiplying each digit left of the least significant by 1+{digit one step right}, and reducing modulo the corresponding prime yields 4*6 mod 7, 1*3 mod 5, 2*0 mod 3, (with the least significant 1 staying the same), so we get "3301", which is the primorial base expansion of 109, thus a(199) = 109.
		

Crossrefs

Cf. A002110, A049345, A276085, A328620, A328624, A328626 (inverse permutation), A328628.
Cf. also A003188, A289234, A328622.

Programs

  • PARI
    A002110(n) = prod(i=1,n,prime(i));
    A276085(n) = { my(f = factor(n)); sum(k=1, #f~, f[k, 2]*A002110(primepi(f[k, 1])-1)); };
    A328624(n) = { my(m=1, p=2, e, g=1); while(n, e = (n%p); m *= (p^((g*e)%p)); g = e+1; n = n\p; p = nextprime(1+p)); (m); };
    A328625(n) = A276085(A328624(n));

Formula

a(n) = A276085(A328624(n)).
For all n, A328620(a(n)) = A328620(n).