A328633 Numbers n for which A328578(n) = A257993(A276086(A276086(n))) = 3, where A276086 converts the primorial base expansion of n into its prime product form, and A257993 returns the index of the least prime not present in its argument.
2, 6, 18, 34, 36, 48, 66, 78, 96, 108, 122, 126, 138, 154, 156, 168, 186, 198, 212, 222, 234, 244, 252, 264, 282, 294, 312, 324, 332, 342, 354, 364, 372, 384, 402, 414, 422, 426, 438, 454, 456, 468, 486, 498, 516, 528, 542, 546, 558, 574, 576, 588, 606, 618, 632, 642, 654, 664, 672, 684, 702, 714, 732, 744, 752, 762, 774, 784, 792, 804
Offset: 1
Keywords
Examples
294 = 7^2 * 3 * 2 has primorial base expansion (A049345) "12400", which, when converted to a prime product form (A276086) yields 11^1 * 7^2 * 5^4 * 3^0 * 2^0 = 336875. This in turn has primorial base representation [11,2,9,1,0,2,1], which when converted to prime product form gives 17^11 * 13^2 * 11^9 * 7^1 * 5^0 * 3^2 * 2^1 = 1720796647657111567992931482, which has the required property of being a multiple of 6 but not of 5, thus 294 is included in this sequence.
Comments