A328644 Triangular array read by rows: row n shows the coefficients of the polynomial p(x,n) constructed as in Comments; these polynomials form a strong divisibility sequence.
1, 1, 6, 7, 9, 27, 13, 84, 54, 108, 11, 39, 126, 54, 81, 133, 990, 1755, 3780, 1215, 1458, 463, 2793, 10395, 12285, 19845, 5103, 5103, 1261, 11112, 33516, 83160, 73710, 95256, 20412, 17496, 4039, 34047, 150012, 301644, 561330, 398034, 428652, 78732, 59049
Offset: 1
Examples
We have p(x,3) = (1/k)((5 (7 + 9 x + 27 x^2))/(6 sqrt(6))), where k = 5/(6 sqrt(6)). First six rows: 1; 1, 6; 7, 9, 27; 13, 84, 54, 108; 11, 39, 126, 54, 81; 133, 990, 1755, 3780, 1215, 1458; The first six polynomials, not factored: 1, 1 + 6 x, 7 + 9 x + 27 x^2, 13 + 84 x + 54 x^2 + 108 x^3, 11 + 39 x + 126 x^2 + 54 x^3 + 81 x^4, 133 + 990 x + 1755 x^2 + 3780 x^3 + 1215 x^4 + 1458 x^5. The first six polynomials, factored: 1, 1 + 6 x, 7 + 9 x + 27 x^2, (1 + 6 x) (13 + 6 x + 18 x^2), 11 + 39 x + 126 x^2 + 54 x^3 + 81 x^4, (1 + 6 x) (19 + 3 x + 9 x^2) (7 + 9 x + 27 x^2).
Programs
-
Mathematica
c[poly_] := If[Head[poly] === Times, Times @@ DeleteCases[(#1 (Boole[ MemberQ[#1, x] || MemberQ[#1, y] || MemberQ[#1, z]] &) /@ Variables /@ #1 &)[List @@ poly], 0], poly]; r = Sqrt[3/2]; f[x_, n_] := c[Factor[Expand[(r x + r)^n - (r x - 1/r)^n]]]; Table[f[x, n], {n, 1, 6}] Flatten[Table[CoefficientList[f[x, n], x], {n, 1, 12}]] (* A328644 *) (* Peter J. C. Moses, Nov 01 2019 *)
Comments