cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A328648 Number of permutations p of [n] such that |p(i) - p(i-1)| is in {2,7} for all i from 2 to n.

Original entry on oeis.org

1, 1, 0, 0, 0, 0, 0, 0, 2, 18, 12, 0, 12, 62, 76, 32, 44, 162, 600, 714, 386, 550, 2514, 5320, 4140, 3336, 8626, 24722, 33428, 27110, 34812, 96210, 200322, 220360, 213368, 376178, 894780, 1400578, 1473944, 1810538, 3653304, 7170370, 9467970
Offset: 0

Views

Author

Alois P. Heinz, Oct 23 2019

Keywords

Comments

For n>1, a(n)/2 is the number of Hamiltonian paths on the graph with vertex set {1,...,n} where i is adjacent to j iff |i-j| is in {2,7}.

Examples

			a(8) = 2: 24681357, 75318642.
a(9) = 18: 135792468, 186429753, 246813579, 297531864, 318642975, 357924681, 429753186, 468135792, 531864297, 579246813, 642975318, 681357924, 753186429, 792468135, 813579246, 864297531, 924681357, 975318642.
a(10) = 12: 135792468(10), 13(10)8642975, 186429753(10), 18(10)3579246, 579246813(10), 5792468(10)31, 642975318(10), 6429753(10)81, (10)318642975, (10)357924681, (10)813579246, (10)864297531.
		

Crossrefs

Programs

  • Maple
    b:= proc(s, l) option remember; `if`(s={}, 1, add(`if`(l=0
          or abs(l-j) in {2, 7}, b(s minus {j}, j), 0), j=s))
        end:
    a:= n-> b({$1..n}, 0):
    seq(a(n), n=0..20);
  • Mathematica
    b[s_, l_] := b[s, l] = If[s == {}, 1, Sum[If[l == 0 || MemberQ[{2, 7}, Abs[l - j]], b[s ~Complement~ {j}, j], 0], {j, s}]];
    a[n_] := b[Range[n], 0];
    Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Oct 23 2021, after Alois P. Heinz *)