cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A328662 Super pseudoprimes (or superpseudoprimes) to base 3: Fermat pseudoprimes to base 3 all of whose divisors that are larger than 1 are either primes or Fermat pseudoprimes to base 3.

Original entry on oeis.org

91, 121, 671, 703, 949, 1541, 1891, 2701, 3281, 7381, 8401, 12403, 14383, 15203, 16531, 18721, 23521, 24727, 28009, 30857, 31621, 31697, 38503, 44287, 46999, 47197, 49051, 49141, 55261, 55969, 63139, 72041, 74593, 79003, 82513, 83333, 88573, 88831, 90751, 96139
Offset: 1

Views

Author

Amiram Eldar, Oct 24 2019

Keywords

Comments

The super pseudoprimes to base 2 are the super-Poulet numbers (A050217).
Includes all the semiprimes in A005935. The first terms that are not semiprimes are 7381, 512461, 532171, 1018601, ... (A328663).
Subsequence of A271116. - Bill McEachen, Nov 06 2020

Examples

			91 is in the sequence since it is a Fermat pseudoprime to base 3, and its proper divisors that are larger than 1 are the primes 7 and 13.
7381 is in the sequence since it is a Fermat pseudoprime to base 3, and its proper divisors that are larger than 1 are the primes 11 and 61, and the composite numbers 121 and 671 that are Fermat pseudoprimes to base 3.
		

References

  • Michal Krížek, Florian Luca, and Lawrence Somer, 17 Lectures on Fermat Numbers: From Number Theory to Geometry, Springer-Verlag, New York, 2001, chapter 12, Fermat's Little Theorem, Pseudoprimes, and Superpseudoprimes, pp. 130-146.

Crossrefs

Subsequence of A005935.
Cf. A050217.

Programs

  • Mathematica
    aQ[n_]:=  CompositeQ[n] && AllTrue[Rest[Divisors[n]], PowerMod[3, #-1, #] == 1 &]; Select[Range[10^5], aQ]