cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A328669 Number of Lyndon compositions of n where every pair of adjacent parts (including the last with the first) is relatively prime.

Original entry on oeis.org

1, 0, 1, 2, 4, 6, 11, 18, 31, 52, 93, 157, 278, 479, 846, 1486, 2646, 4675, 8348, 14864, 26629, 47699, 85777, 154289, 278317, 502436, 908879, 1645712, 2984545, 5417742, 9847188, 17914493, 32625522, 59467892, 108493133, 198089609, 361965237, 661883230, 1211161990
Offset: 1

Views

Author

Gus Wiseman, Oct 26 2019

Keywords

Comments

A Lyndon composition of n is a finite sequence of positive integers summing to n that is lexicographically strictly less than all of its cyclic rotations.

Examples

			The a(1) = 1 through a(8) = 18 Lyndon compositions (empty column not shown):
  (1)  (12)  (13)   (14)    (15)     (16)      (17)
             (112)  (23)    (114)    (25)      (35)
                    (113)   (123)    (34)      (116)
                    (1112)  (132)    (115)     (125)
                            (1113)   (1114)    (134)
                            (11112)  (1123)    (143)
                                     (1132)    (152)
                                     (1213)    (1115)
                                     (11113)   (1214)
                                     (11212)   (1232)
                                     (111112)  (11114)
                                               (11123)
                                               (11132)
                                               (11213)
                                               (11312)
                                               (111113)
                                               (111212)
                                               (1111112)
		

Crossrefs

The non-Lyndon version is A328609 or A318748 (with singletons).
The non-Lyndon non-circular version is A167606.
The version with singletons is A318745.
The necklace case is A328597 or A318728 (with singletons).
The aperiodic case is A328670.
Lyndon compositions are A059966, with relatively prime case A318731.

Programs

  • Mathematica
    aperQ[q_]:=Array[RotateRight[q,#]&,Length[q],1,UnsameQ];
    neckQ[q_]:=Array[OrderedQ[{q,RotateRight[q,#]}]&,Length[q]-1,1,And];
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],aperQ[#]&&neckQ[#]&&And@@CoprimeQ@@@Partition[#,2,1,1]&]],{n,10}]
  • PARI
    b(n, q, pred)={my(M=matrix(n, n)); for(k=1, n, M[k, k]=pred(q, k); for(i=1, k-1, M[i, k]=sum(j=1, k-i, if(pred(j, i), M[j, k-i], 0)))); M[q, ]}
    seq(n)={my(v=sum(k=1, n, k*b(n, k, (i, j)->gcd(i, j)==1))); vector(n, n, sumdiv(n, d, moebius(d)*v[n/d])/n)} \\ Andrew Howroyd, Nov 01 2019

Formula

a(n > 1) = A318745(n) - 1.