A328675 Number of integer partitions of n with no two distinct consecutive parts divisible.
1, 1, 2, 2, 3, 3, 4, 5, 6, 8, 9, 13, 13, 22, 23, 30, 36, 50, 54, 77, 85, 113, 135, 170, 194, 256, 303, 369, 440, 545, 640, 792, 931, 1132, 1347, 1616, 1909, 2295, 2712, 3225, 3799, 4519, 5310, 6278, 7365, 8675, 10170, 11928, 13940, 16314, 19046, 22223, 25856
Offset: 0
Keywords
Examples
The a(1) = 1 through a(10) = 9 partitions (A = 10). 1 2 3 4 5 6 7 8 9 A 11 111 22 32 33 43 44 54 55 1111 11111 222 52 53 72 64 111111 322 332 333 73 1111111 2222 432 433 11111111 522 532 3222 3322 111111111 22222 1111111111
Crossrefs
The Heinz numbers of these partitions are given by A328674.
The case involving all consecutive parts (not just distinct) is A328171.
The version for relative primality instead of divisibility is A328187.
Partitions with all consecutive parts divisible are A003238.
Compositions without consecutive divisibilities are A328460.