cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A328679 Heinz numbers of integer partitions with no two distinct parts relatively prime, but with no divisor in common to all of the parts.

Original entry on oeis.org

1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 17719, 32768, 40807, 43381, 50431, 65536, 74269, 83143, 101543, 105703, 116143, 121307, 123469, 131072, 139919, 140699, 142883, 171613, 181831, 185803, 191479, 203557, 205813, 211381, 213239
Offset: 1

Views

Author

Gus Wiseman, Oct 30 2019

Keywords

Comments

Equals the union A000079 and A328868.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
A partition with no two distinct parts relatively prime is said to be intersecting.

Examples

			The sequence of terms together with their prime indices begins:
      1: {}
      2: {1}
      4: {1,1}
      8: {1,1,1}
     16: {1,1,1,1}
     32: {1,1,1,1,1}
     64: {1,1,1,1,1,1}
    128: {1,1,1,1,1,1,1}
    256: {1,1,1,1,1,1,1,1}
    512: {1,1,1,1,1,1,1,1,1}
   1024: {1,1,1,1,1,1,1,1,1,1}
   2048: {1,1,1,1,1,1,1,1,1,1,1}
   4096: {1,1,1,1,1,1,1,1,1,1,1,1}
   8192: {1,1,1,1,1,1,1,1,1,1,1,1,1}
  16384: {1,1,1,1,1,1,1,1,1,1,1,1,1,1}
  17719: {6,10,15}
  32768: {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
  40807: {6,14,21}
  43381: {6,15,20}
  50431: {10,12,15}
  65536: {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
		

Crossrefs

These are the Heinz numbers of the partitions counted by A328672.
Terms that are not powers of 2 are A328868.
The strict case is A318716.
The version without global relative primality is A328867.
A ranking using binary indices (instead of prime indices) is A326912.
The version for non-isomorphic multiset partitions is A319759.
The version for divisibility (instead of relative primality) is A328677.
Heinz numbers of relatively prime partitions are A289509.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[10000],#==1||GCD@@primeMS[#]==1&&And[And@@(GCD[##]>1&)@@@Subsets[Union[primeMS[#]],{2}]]&]