A328695 Rectangular array R read by descending antidiagonals: divide to each even term of the Wythoff array (A035513) by 2, and delete all others.
1, 4, 2, 17, 9, 3, 72, 38, 5, 12, 305, 161, 8, 51, 6, 1292, 682, 13, 216, 10, 7, 5473, 2889, 21, 915, 16, 30, 14, 23184, 12238, 34, 3876, 26, 127, 59, 25, 98209, 51841, 55, 16419, 42, 538, 250, 106, 11, 416020, 219602, 89, 69552, 68, 2279, 1059, 449, 18, 33
Offset: 1
Examples
Row 1 of the Wythoff array is (1,2,3,5,8,13,21,34,55,89,144,...), so that row 1 of R is (1,4,17,72,...). _______________ Northwest corner of R: 1 4 17 72 305 1292 5473 2 9 38 161 682 2889 12238 3 5 8 13 21 34 55 12 51 216 915 3876 16419 69552 6 10 16 26 42 68 110 7 30 127 538 2279 9654 40895
Crossrefs
Programs
-
Mathematica
w[n_, k_] := Fibonacci[k + 1] Floor[n*GoldenRatio] + (n - 1) Fibonacci[k]; Table[w[n - k + 1, k], {n, 12}, {k, n, 1, -1}] // Flatten; q[n_, k_] := If[Mod[w[n, k], 2] == 0, w[n, k]/2, 0]; t[n_] := Union[Table[q[n, k], {k, 1, 50}]]; u[n_] := If[First[t[n]] == 0, Rest[t[n]], t[n]] Table[u[n], {n, 1, 10}] (* A328695 array *) v[n_, k_] := u[n][[k]]; Table[v[n - k + 1, k], {n, 12}, {k, n, 1, -1}] // Flatten (* A328695 sequence *)
Comments