A328789 Expansion of (chi(x^3) / chi(-x^2))^2 in powers of x where chi() is a Ramanujan theta function.
1, 0, 2, 2, 3, 4, 7, 6, 11, 14, 17, 22, 32, 34, 49, 60, 72, 90, 117, 132, 171, 206, 245, 298, 369, 422, 522, 620, 728, 868, 1043, 1198, 1439, 1688, 1962, 2304, 2717, 3114, 3668, 4258, 4909, 5698, 6627, 7566, 8788, 10112, 11574, 13310, 15317, 17410, 20010
Offset: 0
Keywords
Examples
G.f. = 1 + 2*x^2 + 2*x^3 + 3*x^4 + 4*x^5 + 7*x^6 + 6*x^7 + 11*x^8 + ... G.f. = q^-1 + 2*q^23 + 2*q^35 + 3*q^47 + 4*q^59 + 7*q^71 + 6*q^83 + ...
Links
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Programs
-
Mathematica
a[ n_] := SeriesCoefficient[ (QPochhammer[ -x^2, x^2] QPochhammer[ -x^3, x^6])^2, {x, 0, n}];
-
PARI
{a(n) = my(A); if( n < 0, 0, A = x * O(x^n); polcoeff( (eta(x^4 + A) * eta(x^6 + A)^2)^2 / (eta(x^2 + A) * eta(x^3 + A) * eta(x^12 + A))^2, n))};
Formula
Expansion of q^(1/12) * (eta(q^4) * eta(q^6)^2)^2 / (eta(q^2) * eta(q^3) * eta(q^12))^2 in powers of q.
Euler transform of period 12 sequence [0, 2, 2, 0, 0, 0, 0, 0, 2, 2, 0, 0, ...].
G.f.: Product_{k>=1} (1 + x^(6*k - 3))^2 / (1 - x^(4*k - 2))^2.
a(n) = A112206(2*n).
a(n) ~ exp(2*Pi*sqrt(n)/3) / (4*sqrt(3)*n^(3/4)). - Vaclav Kotesovec, Oct 31 2019
Comments