cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A328798 Expansion of 1 / (chi(-x) * chi(-x^3)) in powers of x where chi() is a Ramanujan theta function.

Original entry on oeis.org

1, 1, 1, 3, 3, 4, 7, 8, 10, 16, 19, 23, 33, 39, 48, 65, 77, 93, 122, 144, 173, 220, 259, 309, 384, 451, 534, 653, 764, 899, 1085, 1264, 1479, 1765, 2048, 2385, 2820, 3260, 3778, 4432, 5105, 5891, 6864, 7879, 9056, 10491, 12002, 13744, 15839, 18064, 20616, 23648
Offset: 0

Views

Author

Michael Somos, Oct 28 2019

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Convolution inverse is A112175, 2nd power is A102315, 3rd power is A229180, 6th power is A123653.
f(-1 / (216 t)) = 1/2 g(t) where q = exp(2 Pi i t) and g() is g.f. for A112175.

Examples

			G.f. = 1 + x + x^2 + 3*x^3 + 3*x^4 + 4*x^5 + 7*x^6 + 8*x^7 + ...
G.f. = q + q^7 + q^13 + 3*q^19 + 3*q^25 + 4*q^31 + 7*q^37 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ -x, x] QPochhammer[ -x^3, x^3], {x, 0, n}];
  • PARI
    {a(n) = my(A); if ( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A) * eta(x^6 + A) / (eta(x + A) * eta(x^3 + A)), n))};

Formula

Expansion of q^(-1/6) * eta(q^2) * eta(q^6) / (eta(q) * eta(q^3)) in powers of q.
Euler transform of period 6 sequence [1, 0, 2, 0, 1, 0, ...].
G.f.: Product_{k>=1} (1 + x^k)^(-1) * (1 + x^(3*k))^(-1).
a(n) ~ exp(2*Pi*sqrt(n)/3) / (4*sqrt(3)*n^(3/4)). - Vaclav Kotesovec, Oct 31 2019