A328795 Expansion of (chi(x) * chi(-x^3))^2 in powers of x where chi() is a Ramanujan theta function.
1, 2, 1, 0, 0, 2, 2, 0, 2, 2, 1, 0, 2, 6, 2, 0, 3, 6, 4, 0, 4, 8, 4, 0, 7, 14, 7, 0, 6, 16, 10, 0, 11, 20, 11, 0, 14, 32, 16, 0, 17, 38, 21, 0, 22, 46, 24, 0, 32, 66, 34, 0, 34, 78, 44, 0, 49, 96, 50, 0, 60, 130, 66, 0, 72, 154, 84, 0, 90, 186, 98, 0, 117, 244
Offset: 0
Keywords
Examples
G.f. = 1 + 2*x + x^2 + 2*x^5 + 2*x^6 + 2*x^8 + 2*x^9 + x^10 + ... G.f. = q^-1 + 2*q^2 + q^5 + 2*q^14 + 2*q^17 + 2*q^23 + 2*q^26 + ...
Links
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Programs
-
Mathematica
a[ n_] := SeriesCoefficient[ (QPochhammer[ -x, x^2] QPochhammer[ x^3, x^6])^2, {x, 0, n}];
-
PARI
{a(n) = my(A); if( n < 0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A)^2 * eta(x^3 + A))^2 / (eta(x+ A) * eta(x^4 + A) * eta(x^6 + A))^2, n))};
Comments