cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A328795 Expansion of (chi(x) * chi(-x^3))^2 in powers of x where chi() is a Ramanujan theta function.

Original entry on oeis.org

1, 2, 1, 0, 0, 2, 2, 0, 2, 2, 1, 0, 2, 6, 2, 0, 3, 6, 4, 0, 4, 8, 4, 0, 7, 14, 7, 0, 6, 16, 10, 0, 11, 20, 11, 0, 14, 32, 16, 0, 17, 38, 21, 0, 22, 46, 24, 0, 32, 66, 34, 0, 34, 78, 44, 0, 49, 96, 50, 0, 60, 130, 66, 0, 72, 154, 84, 0, 90, 186, 98, 0, 117, 244
Offset: 0

Views

Author

Michael Somos, Oct 28 2019

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Convolution square of A328802.
G.f. is a period 1 Fourier series which satisfies f(-1 / (36 t)) = 2 g(t) where q = exp(2 Pi i t) and g() is g.f. for A328789.

Examples

			G.f. = 1 + 2*x + x^2 + 2*x^5 + 2*x^6 + 2*x^8 + 2*x^9 + x^10 + ...
G.f. = q^-1 + 2*q^2 + q^5 + 2*q^14 + 2*q^17 + 2*q^23 + 2*q^26 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ (QPochhammer[ -x, x^2] QPochhammer[ x^3, x^6])^2, {x, 0, n}];
  • PARI
    {a(n) = my(A); if( n < 0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A)^2 * eta(x^3 + A))^2 / (eta(x+ A) * eta(x^4 + A) * eta(x^6 + A))^2, n))};

Formula

Euler transform of period 12 sequence [2, -2, 0, 0, 2, -2, 2, 0, 0, -2, 2, 0, ...].
G.f.: Product_{k>=1} (1 + x^(2*k-1))^2 * (1 - x^(6*k-3))^2.
a(n) = (-1)^n * A328797(n). a(2*n) = A112206(n).
a(4*n) = A328789(n). a(4*n + 1) = 2 * A328798(n). a(4*n + 2) = A328790(n). a(4*n + 3) = 0.

A328800 Expansion of chi(-x) * chi(x^3) in powers of x where chi() is a Ramanujan theta function.

Original entry on oeis.org

1, -1, 0, 0, 0, -1, 0, 0, 1, 0, 0, 0, 1, -1, 0, 0, 1, -1, 0, 0, 1, -1, 0, 0, 2, -2, 0, 0, 1, -2, 0, 0, 2, -2, 0, 0, 3, -3, 0, 0, 3, -3, 0, 0, 3, -3, 0, 0, 5, -5, 0, 0, 4, -5, 0, 0, 6, -5, 0, 0, 7, -7, 0, 0, 7, -8, 0, 0, 8, -8, 0, 0, 11, -11, 0, 0, 10, -12, 0
Offset: 0

Views

Author

Michael Somos, Oct 27 2019

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Convolution square is A328797.
G.f. is a period 1 Fourier series which satisfies f(-1 / (1728 t)) = 2^(1/2) g(t) where q = exp(2 Pi i t) and g() is g.f. for A328796.

Examples

			G.f. = 1 - x - x^5 + x^8 + x^12 - x^13 + x^16 - x^17 + x^20 + ...
G.f. = q^-1 - q^5 - q^29 + q^47 + q^71 - q^77 + q^95 - q^101 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ x, x^2] QPochhammer[ -x^3, x^6], {x, 0, n}];
  • PARI
    {a(n) = my(A); if( n < 0, 0, A = x * O(x^n); polcoeff( (eta(x + A) * eta(x^6 + A)^2) / (eta(x^2 + A) * eta(x^3 + A) * eta(x^12 + A)), n))};

Formula

Expansion of q^(1/6) * (eta(q) * eta(q^6)^2) / (eta(q^2) * eta(q^3) * eta(q^12)) in powers of q.
Euler transform of period 12 sequence [-1, 0, 0, 0, -1, -1, -1, 0, 0, 0, -1, 0, ...].
G.f.: Product_{k>=1} (1 - x^(2*k-1)) * (1 + x^(6*k-3)).
a(n) = (-1)^n * A328802. a(4*n) = A097242(n). a(4*n + 1) = -A328796(n). a(4*n + 2) = a(4*n + 3) = 0.
Showing 1-2 of 2 results.