A328807 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals, where T(n,k) is Sum_{i=0..n} binomial(n,i)*Sum_{j=0..i} binomial(i,j)^k.
1, 1, 3, 1, 3, 8, 1, 3, 9, 20, 1, 3, 11, 27, 48, 1, 3, 15, 45, 81, 112, 1, 3, 23, 93, 195, 243, 256, 1, 3, 39, 225, 639, 873, 729, 576, 1, 3, 71, 597, 2583, 4653, 3989, 2187, 1280, 1, 3, 135, 1665, 11991, 32133, 35169, 18483, 6561, 2816
Offset: 0
Examples
Square array begins: 1, 1, 1, 1, 1, 1, ... 3, 3, 3, 3, 3, 3, ... 8, 9, 11, 15, 23, 39, ... 20, 27, 45, 93, 225, 597, ... 48, 81, 195, 639, 2583, 11991, ... 112, 243, 873, 4653, 32133, 260613, ...
Links
- Seiichi Manyama, Antidiagonals n = 0..100, flattened
Crossrefs
Programs
-
Mathematica
T[n_, k_] := Sum[Binomial[n, i] * Sum[Binomial[i, j]^k, {j, 0, i}], {i, 0, n}]; Table[T[k, n - k], {n, 0, 9}, {k, 0, n}] // Flatten (* Amiram Eldar, May 06 2021 *)
Comments