cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A328821 Triangular array read by rows. Let P be the poset of all even sized subsets of [2n] ordered by inclusion. T(n,k) is the number of intervals in P with length k, 0<=k<=n, n>=0.

Original entry on oeis.org

1, 2, 1, 8, 12, 1, 32, 120, 30, 1, 128, 896, 560, 56, 1, 512, 5760, 6720, 1680, 90, 1, 2048, 33792, 63360, 29568, 3960, 132, 1, 8192, 186368, 512512, 384384, 96096, 8008, 182, 1, 32768, 983040, 3727360, 4100096, 1647360, 256256, 14560, 240, 1
Offset: 0

Views

Author

Geoffrey Critzer, Jun 07 2020

Keywords

Examples

			1,
2,   1,
8,   12,   1,
32,  120,  30,   1,
128, 896,  560,  56,   1,
512, 5760, 6720, 1680, 90, 1
		

Crossrefs

Cf. A054879 (row sums), A081294 (column k=0).

Programs

  • Mathematica
    nn = 8; ev[x_] := Sum[x^n/((2 n)!/2^n), {n, 0, nn}];
    Map[Select[#, # > 0 &] &, Table[(2 n)!/2^n, {n, 0, nn}] CoefficientList[Series[ev[x]^2 ev[y x], {x, 0, nn}], {x, y}]] // Flatten

Formula

Let E(x) = Sum_{n>=0} x^n/((2n)!/2^n). Then Sum_{n>=0} Sum{k=0..n} T(n,k) y^k*x^n/((2n)!/2^n) = E(y*x) * E(x)^2.