A328824 Numerators of A113405(-n) (see the comment for details).
0, 1, 1, 1, -7, -7, -7, 57, 57, 57, -455, -455, -455, 3641, 3641, 3641, -29127, -29127, -29127, 233017, 233017, 233017, -1864135, -1864135, -1864135, 14913081, 14913081, 14913081, -119304647, -119304647, -119304647
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (1,0,-8,8).
Programs
-
Maple
gf := x / ((1 - x)*(1 + 2*x)*(1 - 2*x + 4*x^2)): ser := series(gf, x, 36): seq(coeff(ser,x,n),n=0..30); # Peter Luschny, Nov 11 2019
-
Mathematica
LinearRecurrence[{1,0,-8,8},{0,1,1,1},50] (* Paolo Xausa, Nov 13 2023 *)
-
PARI
concat(0, Vec(x / ((1 - x)*(1 + 2*x)*(1 - 2*x + 4*x^2)) + O(x^40))) \\ Colin Barker, Nov 11 2019
Formula
From Colin Barker, Nov 11 2019: (Start)
G.f.: x / ((1 - x)*(1 + 2*x)*(1 - 2*x + 4*x^2)).
a(n) = a(n-1) - 8*a(n-3) + 8*a(n-4) for n>3. (End)
Comments