cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A328833 A276085 applied to the intersection of A048103 (p^p-free numbers) and A276156 (sums of distinct primorials).

Original entry on oeis.org

0, 1, 2, 3, 30, 4, 9, 6469693230, 212, 200560490130, 510511, 2312, 39, 7799922041683461553249199106329813876687996789903550945093032474868511536164700810, 7858321551080267055879092, 6469693260, 2566376117594999414479597815340071648394471, 557940830126698960967415392, 1062411448280052319722448549835623701226301211611796930357321893850294264731624591303255041960530, 421, 7420738134813, 512820, 3217644767340672907899084554132, 249
Offset: 1

Views

Author

Antti Karttunen, Oct 30 2019

Keywords

Crossrefs

Cf. A328836 (same terms, sorted into ascending order).
Cf. A328313 (a subsequence).

Programs

  • PARI
    A129251(n) = { my(f = factor(n)); sum(k=1, #f~, (f[k, 2]>=f[k, 1])); };
    A328828(n) = { my(i=1, p=2); while(n, if((n%p)>1, return(i)); i++; n = n\p; p = nextprime(1+p)); (0); };
    isA328832(n) = ((0==A129251(n)) && (0==A328828(n)));
    A002110(n) = prod(i=1,n,prime(i));
    A276085(n) = { my(f = factor(n)); sum(k=1, #f~, f[k, 2]*A002110(primepi(f[k, 1])-1)); };
    for(n=1,32768,if(isA328832(n),print1(A276085(n),", ")));

Formula

a(n) = A276085(A328832(n)).