cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A328835 Prime shadow of primorial base exp-function: a(n) = A181819(A276086(n)).

Original entry on oeis.org

1, 2, 2, 4, 3, 6, 2, 4, 4, 8, 6, 12, 3, 6, 6, 12, 9, 18, 5, 10, 10, 20, 15, 30, 7, 14, 14, 28, 21, 42, 2, 4, 4, 8, 6, 12, 4, 8, 8, 16, 12, 24, 6, 12, 12, 24, 18, 36, 10, 20, 20, 40, 30, 60, 14, 28, 28, 56, 42, 84, 3, 6, 6, 12, 9, 18, 6, 12, 12, 24, 18, 36, 9, 18, 18, 36, 27, 54, 15, 30, 30, 60, 45, 90, 21, 42, 42, 84, 63, 126, 5, 10, 10, 20, 15, 30, 10, 20, 20
Offset: 0

Views

Author

Antti Karttunen, Oct 29 2019

Keywords

Comments

From Antti Karttunen, Apr 30 2022: (Start)
These are prime-factorization representations of single-variable polynomials where the coefficient of term x^(k-1) (encoded as the exponent of prime(k) in the factorization of n) is equal to the number of times a nonzero digit k occurs in the primorial base representation of n.
Note that this sequence, and all the sequences derived from it as b(n) = f(a(n)), [where f is any integer-valued function] can be represented as b(n) = g(A278226(n)), where g(n) = f(A181819(n)). E.g., if f is the identity function (so that b(n) is this sequence), then g(n) is A181819(n). See the comment and formulas in the latter sequence.
(End)

Crossrefs

Programs

  • PARI
    A181819(n) = factorback(apply(e->prime(e),(factor(n)[,2])));
    A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
    A328835(n) = A181819(A276086(n));

Formula

a(n) = A181819(A276086(n)).
A001222(a(n)) = A267263(n).
A007814(a(n)) = A328614(n).
A061395(a(n)) = A328114(n).
For all n >= 0, a(n) = A181819(A278226(n)) and A181821(a(n)) = A278226(n). - Antti Karttunen, Apr 30 2022