A328849 Numbers in whose primorial base expansion only even digits appear.
0, 4, 12, 16, 24, 28, 60, 64, 72, 76, 84, 88, 120, 124, 132, 136, 144, 148, 180, 184, 192, 196, 204, 208, 420, 424, 432, 436, 444, 448, 480, 484, 492, 496, 504, 508, 540, 544, 552, 556, 564, 568, 600, 604, 612, 616, 624, 628, 840, 844, 852, 856, 864, 868, 900, 904, 912, 916, 924, 928, 960, 964, 972, 976, 984, 988, 1020, 1024
Offset: 1
Examples
144 is written as "4400" in primorial base (A049345), because 4*A002110(3) + 4*A002110(2) + 0*A002110(1) + 0*A002110(0) = 4*30 + 4*6 = 144, thus all the digits are even and 144 is included in this sequence.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..9072
- Antti Karttunen, Data supplement: n, a(n) computed for n = 1..90720
- Index entries for sequences related to primorial base.
Crossrefs
Programs
-
Mathematica
With[{max = 5}, bases = Prime@ Range[max, 1, -1]; nmax = Times @@ bases - 1; prmBaseDigits[n_] := IntegerDigits[n, MixedRadix[bases]]; Select[Range[0, nmax, 2], AllTrue[prmBaseDigits[#], EvenQ] &]] (* Amiram Eldar, May 23 2023 *)
-
PARI
A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); }; isA328849(n) = issquare(A276086(n));
Comments