A348198
Terms of A326835 having more divisors than any smaller term.
Original entry on oeis.org
1, 3, 9, 15, 45, 105, 225, 405, 495, 1155, 3675, 4455, 8085, 19635, 62475, 75735, 137445, 373065, 1187025, 1741905, 2611455, 8580495, 27301575, 50515245, 60063465, 248834355, 1021078905, 2374216515, 2822982855, 11695214685, 47990708535
Offset: 1
The sequence A326835 begins with 1, 3, 5, 7, 9, 11, 13 and 15. The number of divisors of these terms are 1, 2, 2, 2, 3, 2, 2 and 4, respectively. The record values, 1, 2, 3 and 4, occur at 1, 3, 9 and 15, the first 4 terms of this sequence.
-
q[n_] := Length @ Union[EulerPhi /@ (d = Divisors[n])] == Length[d]; dm = 0; s = {}; Do[If[q[n], d = DivisorSigma[0, n]; If[d > dm, dm = d; AppendTo[s, n]]], {n, 1, 10^6, 2}]; s
A348002
Numbers with a record number of distinct values of the unitary totient function applied to their unitary divisors (A348001).
Original entry on oeis.org
1, 3, 12, 60, 420, 660, 4620, 8580, 9240, 60060, 78540, 106260, 157080, 1021020, 1381380, 1492260, 1806420, 2762760, 2984520, 23483460, 34321980, 38798760, 46966920, 68643960, 681020340, 892371480, 1848483780, 1990674840, 2127962760, 3226266120
Offset: 1
The first 12 terms of A348001(k) are 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2 and 4. The record values, 1, 2 and 4, are obtained at k = 1, 3 and 12. Therefore, this sequence begins with 1, 3, 12.
-
f[p_, e_] := p^e - 1; uphi[1] = 1; uphi[n_] := Times @@ f @@@ FactorInteger[n]; s[n_] := Length @ Union[uphi /@ Select[Divisors[n], CoprimeQ[#, n/#] &]]; sm = 0; seq = {}; Do[s1 = s[n]; If[s1 > sm, sm = s1; AppendTo[seq, n]], {n, 1, 10^5}]; seq
A348199
a(n) is the least term of A326835 whose number of divisors is n.
Original entry on oeis.org
1, 3, 9, 15, 81, 45, 729, 105, 225, 405, 59049, 495, 531441, 3645, 2025, 1155, 43046721, 3675, 387420489, 4455, 18225, 295245, 31381059609, 8085, 50625, 2657205, 65025, 40095, 22876792454961, 34425, 205891132094649, 19635, 1476225, 215233605, 455625, 62475
Offset: 1
-
seq[m_] := Module[{p = Select[Range[m], PrimeQ], s = Table[0, {m}], c, nd, ndd}, s[[p]] = 3^(p - 1); c = Length[p]; n = 1; While[c < m, nd = DivisorSigma[0, n]; If[nd <= m && s[[nd]] == 0, ndd = Length@Union[EulerPhi /@ Divisors[n]]; If[ndd == nd, c++; s[[nd]] = n]]; n++]; s]; seq[30]
Showing 1-3 of 3 results.
Comments