A328864 For any three-digit number k = hdu, f(k) = (h+d+u) + (h*d+d*u+u*h) + (h*d*u). This sequence consists of the numbers k for which the ratio k/f(k) is an integer.
100, 114, 115, 120, 121, 190, 199, 200, 207, 208, 210, 221, 260, 290, 299, 300, 301, 304, 330, 390, 399, 400, 420, 441, 448, 490, 499, 500, 572, 573, 590, 599, 600, 620, 624, 625, 690, 699, 700, 705, 790, 799, 800, 806, 880, 890, 899, 900, 990, 999
Offset: 1
Examples
For k = 625, f(k) = 6+2+5 + 6*2+2*5+6*5 + 6*2*5 = 13 + 52 + 60 = 125 and 625/125 = 5, hence, 625 is a term, and 5 is the solution to part (i) of the BMO problem.
References
- A. Gardiner, The Mathematical Olympiad Handbook: An Introduction to Problem Solving, Oxford University Press, 1997, reprinted 2011, Pb 1 pp. 55 and 99-100 (1994)
Links
- British Mathematical Olympiad, 1994 - Problem 1.
- Eric Weisstein's World of Mathematics, Symmetric polynomial
- Wikipedia, Elementary symmetric polynomial.
Crossrefs
Programs
-
Maple
for i from 1 to 9 do for j from 0 to 9 do for k from 0 to 9 do n := 100*i + 10*j + k ; m := i + j + k + i*j + j*k + k*i + i*j*k ; if n/m = floor(n/m) then print(n,m,n/m) ; end if ; end do ; end do ; end do ;
-
Mathematica
Select[Range[100, 999], ({h,d,u} = IntegerDigits@ #; IntegerQ[# / (d + u + d u + (1 + d) h (1 + u))]) &] (* Giovanni Resta, Oct 29 2019 *)
Comments