A328868 Heinz numbers of integer partitions with no two (not necessarily distinct) parts relatively prime, but with no divisor in common to all of the parts.
17719, 40807, 43381, 50431, 74269, 83143, 101543, 105703, 116143, 121307, 123469, 139919, 140699, 142883, 171613, 181831, 185803, 191479, 203557, 205813, 211381, 213239, 215267, 219271, 230347, 246703, 249587, 249899, 279371, 286897, 289007, 296993, 300847
Offset: 1
Keywords
Examples
The sequence of terms together with their prime indices begins: 17719: {6,10,15} 40807: {6,14,21} 43381: {6,15,20} 50431: {10,12,15} 74269: {6,10,45} 83143: {10,15,18} 101543: {6,21,28} 105703: {6,15,40} 116143: {12,14,21} 121307: {10,15,24} 123469: {12,15,20} 139919: {6,15,50} 140699: {6,22,33} 142883: {6,10,75} 171613: {6,14,63} 181831: {6,20,45} 185803: {10,14,35} 191479: {14,18,21} 203557: {15,18,20} 205813: {10,15,36} 211381: {10,12,45} 213239: {6,15,70} 215267: {6,10,105} 219271: {6,26,39} 230347: {6,6,10,15}
Crossrefs
Programs
-
Mathematica
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; dv=Select[Range[100000],GCD@@primeMS[#]==1&&And[And@@(GCD[##]>1&)@@@Tuples[Union[primeMS[#]],2]]&]
Comments