cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A328888 Array read by antidiagonals: T(n,m) is the number of acyclic edge covers of the complete bipartite graph K_{n,m}.

Original entry on oeis.org

1, 1, 1, 1, 6, 1, 1, 18, 18, 1, 1, 46, 132, 46, 1, 1, 110, 696, 696, 110, 1, 1, 254, 3150, 6728, 3150, 254, 1, 1, 574, 13086, 51760, 51760, 13086, 574, 1, 1, 1278, 51492, 348048, 632970, 348048, 51492, 1278, 1, 1, 2814, 195180, 2143736, 6466980, 6466980, 2143736, 195180, 2814, 1
Offset: 1

Views

Author

Andrew Howroyd, Oct 29 2019

Keywords

Comments

In other words, the number of spanning forests of the complete bipartite graph K_{n,m} without isolated vertices.

Examples

			Array begins:
=============================================================
n\m | 1   2     3       4        5          6           7
----+--------------------------------------------------------
  1 | 1   1     1       1        1          1           1 ...
  2 | 1   6    18      46      110        254         574 ...
  3 | 1  18   132     696     3150      13086       51492 ...
  4 | 1  46   696    6728    51760     348048     2143736 ...
  5 | 1 110  3150   51760   632970    6466980    58620030 ...
  6 | 1 254 13086  348048  6466980   96208632  1231832364 ...
  7 | 1 574 51492 2143736 58620030 1231832364 21634786586 ...
...
		

Crossrefs

Column 2 is A328890.
Main diagonal is A328889.

Programs

  • PARI
    T(n, m=n)={my(M=matrix(n, m), N=matrix(n, m, n, m, n^(m-1) * m^(n-1))); for(n=1, n, for(m=1, m, M[n,m] = N[n,m] + sum(i=1, n-1, sum(j=1, m-1, binomial(n-1, i-1)*binomial(m, j)*N[i,j]*M[n-i, m-j])))); M}
    { my(A=T(7)); for(i=1, #A, print(A[i,])) }

Formula

T(n,m) = A072590(n, m) + Sum_{i=1..n-1} Sum_{j=1, m-1} binomial(n-1, i-1) * binomial(m, j) * A072590(i, j) * T(n-i, m-j).