A328888 Array read by antidiagonals: T(n,m) is the number of acyclic edge covers of the complete bipartite graph K_{n,m}.
1, 1, 1, 1, 6, 1, 1, 18, 18, 1, 1, 46, 132, 46, 1, 1, 110, 696, 696, 110, 1, 1, 254, 3150, 6728, 3150, 254, 1, 1, 574, 13086, 51760, 51760, 13086, 574, 1, 1, 1278, 51492, 348048, 632970, 348048, 51492, 1278, 1, 1, 2814, 195180, 2143736, 6466980, 6466980, 2143736, 195180, 2814, 1
Offset: 1
Examples
Array begins: ============================================================= n\m | 1 2 3 4 5 6 7 ----+-------------------------------------------------------- 1 | 1 1 1 1 1 1 1 ... 2 | 1 6 18 46 110 254 574 ... 3 | 1 18 132 696 3150 13086 51492 ... 4 | 1 46 696 6728 51760 348048 2143736 ... 5 | 1 110 3150 51760 632970 6466980 58620030 ... 6 | 1 254 13086 348048 6466980 96208632 1231832364 ... 7 | 1 574 51492 2143736 58620030 1231832364 21634786586 ... ...
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1275
- Eric Weisstein's World of Mathematics, Complete Bipartite Graph
Programs
-
PARI
T(n, m=n)={my(M=matrix(n, m), N=matrix(n, m, n, m, n^(m-1) * m^(n-1))); for(n=1, n, for(m=1, m, M[n,m] = N[n,m] + sum(i=1, n-1, sum(j=1, m-1, binomial(n-1, i-1)*binomial(m, j)*N[i,j]*M[n-i, m-j])))); M} { my(A=T(7)); for(i=1, #A, print(A[i,])) }
Comments