cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A328890 Number of acyclic edge covers of the complete bipartite graph K_{n,2}.

Original entry on oeis.org

1, 6, 18, 46, 110, 254, 574, 1278, 2814, 6142, 13310, 28670, 61438, 131070, 278526, 589822, 1245182, 2621438, 5505022, 11534334, 24117246, 50331646, 104857598, 218103806, 452984830, 939524094, 1946157054, 4026531838, 8321499134, 17179869182, 35433480190, 73014444030
Offset: 1

Views

Author

Andrew Howroyd, Oct 29 2019

Keywords

Crossrefs

Column 2 of A328888.

Programs

  • PARI
    a(n) = {(2 + n)*2^(n-1) - 2}
    
  • PARI
    Vec(x*(1 + x - 4*x^2) / ((1 - x)*(1 - 2*x)^2) + O(x^30)) \\ Colin Barker, Nov 05 2019

Formula

a(n) = 2*A000225(n-1) + A001787(n).
a(n) = (2 + n)*2^(n-1) - 2.
From Colin Barker, Nov 05 2019: (Start)
G.f.: x*(1 + x - 4*x^2) / ((1 - x)*(1 - 2*x)^2).
a(n) = 5*a(n-1) - 8*a(n-2) + 4*a(n-3) for n>3.
(End)