cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A328902 Triangle T(n, k) read by rows: T(n, k) is the denominator of the rational Catalan number defined as binomial(n + k, n)/(n + k) for 0 <= k <= n, n > 0; T(0, 0) = 1.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 3, 1, 1, 3, 4, 1, 2, 1, 4, 5, 1, 1, 1, 1, 5, 6, 1, 2, 3, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 7, 8, 1, 2, 1, 4, 1, 2, 1, 8, 9, 1, 1, 3, 1, 1, 3, 1, 1, 9, 10, 1, 2, 1, 2, 5, 2, 1, 1, 1, 5, 11, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 11, 12, 1, 2, 3, 4, 1, 3, 1, 2, 3, 1, 1, 6
Offset: 0

Views

Author

Stefano Spezia, Oct 30 2019

Keywords

Examples

			n\k| 0 1 2 3 4 5 6
---+--------------
0  | 1
1  | 1 1
2  | 2 1 2
3  | 3 1 1 3
4  | 4 1 2 1 4
5  | 5 1 1 1 1 5
6  | 6 1 2 3 1 1 1
...
		

Crossrefs

Cf. A000108, A028310 (1st column), A046899, A051162, A328901 (numerator).

Programs

  • Mathematica
    Flatten[Join[{1},Table[(n+k)/GCD[n+k,Binomial[n+k,n]],{n,1,12},{k,0,n}]]]
  • PARI
    A328902(n,k)=if(n,(n+k)/gcd(binomial(n+k,n),n+k),1) \\ M. F. Hasler, Nov 04 2019

Formula

T(n, k) = (n + k)/gcd(binomial(n + k, n), n + k) for n > 0.