cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A328921 Triangle read by rows: T(n,k) = number of vertex labeled connected Goldstone diagrams with n interactions and k external potentials.

Original entry on oeis.org

1, 2, 1, 20, 8, 1, 592, 240, 36, 2, 33888, 14208, 2400, 192, 6, 3134208, 1355520, 248640, 24000, 1200, 24, 423974400, 188052480, 36599040, 3978240, 252000, 8640, 120, 78722795520, 35613849600, 7240020480, 853977600, 62657280, 2822400, 70560, 720, 19193652817920, 8816953098240, 1851920179200
Offset: 0

Views

Author

R. J. Mathar, Oct 31 2019

Keywords

Examples

			          1;
          2           1;
         20           8           1;
        592         240          36           2;
      33888       14208        2400         192           6;
    3134208     1355520      248640       24000        1200          24;
		

Crossrefs

Formula

T(n,k) + A328922(n,k) = A328826(n,k).

A328826 Triangle read by rows: binomial(n,k)*(2*n-k)!, n>=0, 0<=k<=n.

Original entry on oeis.org

1, 2, 1, 24, 12, 2, 720, 360, 72, 6, 40320, 20160, 4320, 480, 24, 3628800, 1814400, 403200, 50400, 3600, 120, 479001600, 239500800, 54432000, 7257600, 604800, 30240, 720, 87178291200, 43589145600, 10059033600, 1397088000, 127008000, 7620480, 282240, 5040, 20922789888000
Offset: 0

Views

Author

R. J. Mathar, Oct 28 2019

Keywords

Comments

Vertex-labeled disconnected Goldstone diagrams with n vertices and k single-particle potentials.

Examples

			The triangle starts
    1;
    2     1;
   24    12     2;
  720   360    72     6;
40320 20160  4320   480    24;
		

Crossrefs

Cf. A099022 (row sums), A000142 (diagonal), A010050 (column k=0), A002674 (k=1).

Programs

  • Maple
    A328826 := proc(n,k)
            binomial(n,k)*(2*n-k)! ;
    end proc:
  • Mathematica
    Table[Binomial[n,k](2n-k)!,{n,0,10},{k,0,n}]//Flatten (* Harvey P. Dale, Feb 03 2022 *)

Formula

T(n,k)= binomial(n,k)*(2*n-k)!.
T(n,k) = A328921(n,k) + A328922(n,k). - R. J. Mathar, Nov 02 2019
Showing 1-2 of 2 results.