cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 19 results. Next

A316328 Lexicographically earliest knight's path on spiral on infinite chessboard.

Original entry on oeis.org

0, 9, 2, 5, 8, 3, 6, 1, 4, 7, 10, 13, 28, 31, 14, 11, 26, 23, 44, 19, 22, 43, 40, 17, 34, 37, 18, 15, 32, 29, 52, 25, 46, 21, 42, 69, 20, 39, 16, 33, 12, 27, 24, 45, 74, 41, 68, 103, 36, 61, 94, 57, 54, 85, 50, 47, 76, 113, 72, 107, 150, 67, 102, 63, 66, 35
Offset: 0

Views

Author

N. J. A. Sloane, Jul 13 2018

Keywords

Comments

On a doubly-infinite chessboard, number all the cells in a counterclockwise spiral starting at a central cell labeled 0. Start with a knight at cell 0, and thereafter always move the knight to the smallest unvisited cell. Sequence gives succession of squares visited.
Sequence ends if knight is unable to move.
Inspired by A316588 and, like that sequence, has only finitely many terms; see A316667 for details.
See A326924 for a variant where the knight prefers squares closest to the origin, and gets trapped only after 22325 moves. - M. F. Hasler, Oct 21 2019
See A323809 for an infinite extension of this sequence, obtained by allowing the knight to go back in case it was trapped. See A328908 for a variant of length > 10^6, using the taxicab distance, and A328909 for a variant using the sup norm. - M. F. Hasler, Nov 04 2019

Examples

			The board is spirally numbered, starting with 0 at (0,0), as follows:
.
  16--15--14--13--12   :
   |               |   :
  17   4---3---2  11  28
   |   |       |   |   |
  18   5   0---1  10  27
   |   |           |   |
  19   6---7---8---9  26
   |                   |
  20--21--22--23--24--25
.
Coordinates of a point are given in A174344, A274923 and A296030 (but these have offset 1: they list coordinates of the n-th point on the spiral, so the coordinates of first point, 0 at the origin, have index n = 1, etc).
Starting at the origin, a(0) = 0, the knight jumps to the square with the lowest number at the eight available positions, (+-2, +-1) or (+-1, +-2), which is a(1) = 9 at (2, -1).
From there, the available square with the lowest number is a(2) = 2 at (1, 1): square 0 at the origin is not available since already occupied earlier. Similarly, the knight will not be allowed to go on squares a(1) = 9 or a(2) = 2 ever after.
		

Crossrefs

Cf. A316667 (same with offset 1 and values +1), A316338 (numbers not in this sequence).
Cf. A323809 (infinite extension of this sequence).
Cf. A316588 (variant with diagonally numbered board, coordinates x, y >= 0).
Cf. A326924 and A326922 (variant: choose square closest to the origin), A328908 and A328928 (variant using taxicab distance); A328909 and A328929 (variant using sup norm).
Cf. A326916 and A326918, A326413, A328698 (squares are filled with digits of the infinite word 0,1,...9,1,0,1,1,...).
Cf. A174344, A274923, A296030 (coordinates of a given square).

Programs

  • PARI
    {local( K=[[(-1)^(i\2)<<(i>4),(-1)^i<<(i<5)]|i<-[1..8]], nxt(p, x=coords(p))=vecsort(apply(K->t(x+K), K))[1], pos(x,y)=if(y>=abs(x),4*y^2-y-x,-x>=abs(y),4*x^2-x-y,-y>=abs(x),(4*y-3)*y+x,(4*x-3)*x+y), coords(n, m=sqrtint(n), k=m\/2)=if(m<=n-=4*k^2, [n-3*k, -k], n>=0, [-k, k-n], n>=-m, [-k-n, k], [k, 3*k+n]), U=[], t(x, p=pos(x[1],x[2]))=if(p<=U[1]||setsearch(U, p), oo, p)); my(A=List(0)); for(n=1, oo, U=setunion(U, [A[n]]); while(#U>1&&U[2]==U[1]+1, U=U[^1]); iferr(listput(A, nxt(A[n])), E, break)); print("Index of the last term: ", #A-1); A316328(n)=A[n+1];}

Formula

a(n) = A316667(n+1) - 1.

Extensions

Terms from a(17) on computed by Daniël Karssen, Jul 10 2018
Examples added and crossrefs edited by M. F. Hasler, Nov 04 2019

A328909 Knight's tour on spirally numbered infinite board, when the knight always jumps on the unvisited square closest to the origin, first according to the sup-norm, then 2-norm, then number of the square: a(n) = number of square visited at move n.

Original entry on oeis.org

0, 9, 2, 5, 8, 3, 6, 1, 4, 7, 10, 13, 28, 31, 14, 11, 26, 23, 44, 19, 22, 43, 40, 17, 34, 37, 18, 15, 32, 29, 52, 25, 46, 21, 42, 69, 20, 39, 16, 33, 12, 27, 24, 45, 74, 41, 68, 103, 38, 35, 60, 93, 30, 53, 84, 49, 78, 115, 160, 75, 116, 47, 76, 113, 72, 107, 150, 67, 36, 61, 94, 57, 54, 85, 50, 79, 82
Offset: 0

Views

Author

M. F. Hasler, Oct 31 2019

Keywords

Comments

Differs from A326924 (where only the 2-norm is considered) from a(34) = 42 on, and from A316328 (which considers only the number of the square) from a(48) = 38 on.
When the knight lands on square number a(25108) = 21040 of coordinates (73, -57), there is no unvisited square within reach. The sequence then stops, or can be extended by specifying that the knight has to go back on its path until an unvisited square comes within reach, as in A323809.
The least unvisited square at move 25108 is square number 17822 at (67,67). It is however close to the border of the visited region and the knight will visit it in the infinite extension of the sequence shortly after, at move n = 25358. Is there a square that will never be visited in that infinite extension? (Cf. comments in A323809.) - M. F. Hasler, Nov 04 2019

Examples

			The squares are numbered as in the spiral given in A174344 (upside down to get a counterclockwise spiral, but this is irrelevant here).
The knight starts at a(0) = 0 with coordinates (0, 0).
It jumps to a(1) = 9 with coordinates (2, -1): all 8 available squares (+-2, +-1) and (+-1, +-2) are at the same sup-norm and Euclidean distance from the origin, but square number 9 has the smallest number.
		

Crossrefs

Cf. A328929 for the value on the visited square, sup norm of coordinates of a(n).
Cf. A323809 ~ A316328 ~ A316667, A326924, A328908 (variants).
Cf. A174344, A274923, A296030 (coordinates of square number n).

Programs

  • PARI
    {local(coords(n, m=sqrtint(n), k=m\/2)=if(m<=n-=4*k^2, [n-3*k, -k], n>=0, [-k, k-n], n>=-m, [-k-n, k], [k, 3*k+n]), U=[]/*used squares*/, K=vector(8, i, [(-1)^(i\2)<<(i>4), (-1)^i<<(i<5)])/* knight moves*/, pos(x,y)=if(y>=abs(x), 4*y^2-y-x, -x>=abs(y),4*x^2-x-y, -y>=abs(x),(4*y-3)*y+x, (4*x-3)*x+y), t(x, p=pos(x[1],x[2]))=if(p<=U[1]||setsearch(U, p), oo, [vecmax(abs(x)), norml2(x), p]), nxt(p, x=coords(p))=vecsort(apply(K->t(x+K), K))[1][3]); my(A=List(0)/*list of positions*/); for(n=1, oo, U=setunion(U, [A[n]]); while(#U>1&&U[2]==U[1]+1, U=U[^1]); iferr(listput(A, nxt(A[n])), E, break)); print("Index of last term: ", #A-1); A328909(n)=A[n+1];} \\ To compute the infinite extension of the sequence, set en upper limit to the for() loop and replace "break" by listput(A, A[n-1])

Formula

A328929(n) = max(|A174344(a(n))|, |A274923(a(n))|) = sup norm of the coordinates of square a(n).

A326924 Squares visited by a knight on a spirally numbered board, moving always to the unvisited square closest to the origin.

Original entry on oeis.org

0, 9, 2, 5, 8, 3, 6, 1, 4, 7, 10, 13, 28, 31, 14, 11, 26, 23, 44, 19, 22, 43, 40, 17, 34, 37, 18, 15, 32, 29, 52, 25, 46, 21, 76, 47, 50, 27, 12, 33, 16, 39, 20, 45, 24, 51, 48, 77, 114, 73, 70, 105, 38, 35, 60, 93, 30, 53, 84, 49, 78, 115, 74, 41, 68, 103, 36, 61, 94, 57, 54, 85, 124, 81
Offset: 0

Views

Author

M. F. Hasler, Oct 21 2019

Keywords

Comments

"Closest to the origin" is meant in the sense of Euclidean distance, and in case of a tie, the square coming earliest on the spiral.
Differs from the original A316328 from a(34) = 76 on. See there for more information and other related sequences.
The knight gets trapped at the 22325th move at position (x,y) = (81, -18), from which it can't reach any unvisited square.
Sequence A326922 gives the distance^2 of the square number a(n) visited at move n. - M. F. Hasler, Oct 22 2019
From M. F. Hasler, Nov 04 2019: (Start)
When a(22325) = 25983 at (81, -18) is reached, at distance sqrt(6885) from the origin, the last unvisited square has number 13924, at (-59, 59), distance sqrt(6962) from the origin. This suggests that in an infinite extension (knight moves one step back if no unvisited square is available, cf. A323809) the knight might eventually visit every square. Can this be disproved by a counterexample of a square which will never be visited in the infinite extension? (In A328908 such a counterexample exists even before the knight gets stuck.)
The ratio a(n)/n oscillates between 0.5 and less than 1.7 for all n > 3000, even < 1.5 for all n > 14000, cf. graph of the sequence. What is the superior and inferior limit of this ratio, assuming the infinite extension beyond n = 22325?
(End)

Crossrefs

Cf. A174344, A274923, A296030 (coordinate of square number n).

Programs

  • PARI
    {local(coords(n, m=sqrtint(n), k=m\/2)=if(m<=n-=4*k^2, [n-3*k, -k], n>=0, [-k, k-n], n>=-m, [-k-n, k], [k, 3*k+n]), U=[]/* used squares */, K=vector(8, i, [(-1)^(i\2)<<(i>4), (-1)^i<<(i<5)])/* knight moves */, pos(x,y)=if(y>=abs(x),4*y^2-y-x, -x>=abs(y),4*x^2-x-y, -y>=abs(x),(4*y-3)*y+x, (4*x-3)*x+y), t(x, p=pos(x[1],x[2]))=if(p<=U[1]||setsearch(U, p), oo, [norml2(x),p]), nxt(p, x=coords(p))=vecsort(apply(K->t(x+K), K))[1][2]); my(A=List(0)/*list of positions*/); for(n=1, oo, U=setunion(U, [A[n]]); while(#U>1&&U[2]==U[1]+1, U=U[^1]); iferr(listput(A, nxt(A[n])), E, break)); print("Index of last term: ", #A-1); A326924(n)=A[n+1];} \\ To compute the infinite extension, set upper bound in for() loop and replace "break" by listput(A, A[n-1])

A326918 Squares visited by a knight moving on a single-digit square-spiral numbered board where the knight moves to the smallest numbered unvisited square; the minimum distance from the origin is used if the square numbers are equal; the smallest spiral number ordering is used if the distances are equal.

Original entry on oeis.org

0, 0, 1, 0, 1, 0, 1, 1, 2, 2, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 2, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 2, 2, 1, 1, 0, 2, 3, 2, 2, 1, 3, 1, 1, 1, 2, 2, 3, 2, 3, 1, 4, 3, 5, 6, 1, 1, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 2, 0, 1, 1, 0, 1
Offset: 0

Views

Author

Scott R. Shannon, Oct 21 2019

Keywords

Comments

This sequence uses the same board numbering as A326413, and like that sequence, if the next step encounters two or more squares with the same square number, it then chooses the square which is the closest to the original 0-squared origin. But if two or more squares are found which also have the same distance to the origin, then the square which was first drawn in the spiral numbering is chosen, i.e., the smallest standard spiral numbered square as in A316667.
The sequence is finite. After 1069 steps a square with the number 9 (standard spiral number = 473) is visited, after which all neighboring squares have been visited.
Sequence A326916(n) gives the number of the square visited at step n, i.e., its rank in the spiral, starting with 0, as illustrated, e.g., in A326413. The digit on that square, i.e., a(n) can be obtained through A007376, cf. formula. - M. F. Hasler, Oct 21 2019

Examples

			The squares are numbered using single digits of the spiral number ordering as:
                                .
    2---2---2---1---2---0---2   :
    |                       |   :
    3   1---2---1---1---1   9   3
    |   |               |   |   |
    2   3   4---3---2   0   1   1
    |   |   |       |   |   |   |
    4   1   5   0---1   1   8   3
    |   |   |           |   |   |
    2   4   6---7---8---9   1   0
    |   |                   |   |
    5   1---5---1---6---1---7   3
    |                           |
    2---6---2---7---2---8---2---9
If the knight has a choice of two or more squares in this spiral with the same number which also have the same distance from the origin, then the square with the minimum standard spiral number, as shown in A316667, is chosen.
		

Crossrefs

Cf. A174344, A274923, A296030 (coordinates of the square number n).

Formula

a(n) = A007376(A326916(n)). - M. F. Hasler, Oct 21 2019

A326413 Successive squares visited by a knight on the single-digit square spiral, with ties resolved towards the left.

Original entry on oeis.org

0, 0, 1, 0, 1, 0, 1, 1, 2, 2, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 2, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 2, 2, 1, 1, 0, 2, 3, 2, 2, 1, 3, 1, 1, 1, 1, 1, 2, 2, 3, 2, 3, 1, 4, 3, 5, 6, 1, 1, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0
Offset: 1

Views

Author

N. J. A. Sloane, Oct 17 2019

Keywords

Comments

Take the standard counterclockwise square spiral starting at 0, as in A304586, but only write one digit at a time in the cells of the spiral: 0,1,2,3,4,5,6,7,8,9,1,0,1,1,1,2,...
Place a chess knight at cell 0. Move it to the lowest-numbered cell it can attack, and if there is a tie, move it to the cell closest (in Euclidean distance) to the start, and if there is still a tie, move to the left(*).
No cell can be visited more than once.
Inspired by the Trapped Knight video and A316667.
Just as for A316667, the sequence is finite. After a while, the knight has no unvisited squares it can reach, and the sequence ends with a(1217) = 4.
(*)Moving to the left means choose the point with the lowest x-coordinate. This leads to an unambiguous choice of tied squares only for the 'move left' case.

Examples

			The digit-square spiral is
                                .
                                .
    2---2---2---1---2---0---2   2
    |                       |   |
    3   1---2---1---1---1   9   3
    |   |               |   |   |
    2   3   4---3---2   0   1   1
    |   |   |       |   |   |   |
    4   1   5   0---1   1   8   3
    |   |   |           |   |   |
    2   4   6---7---8---9   1   0
    |   |                   |   |
    5   1---5---1---6---1---7   3
    |                           |
    2---6---2---7---2---8---2---9
		

Crossrefs

Extensions

More terms from Luca Petrone
Corrected and extended by Eric Angelini, Oct 24 2019

A323808 Squares visited by a knight on a spirally numbered board and moving to the lowest available unvisited square at each step and if no unvisited squares are available move one step back.

Original entry on oeis.org

1, 10, 3, 6, 9, 4, 7, 2, 5, 8, 11, 14, 29, 32, 15, 12, 27, 24, 45, 20, 23, 44, 41, 18, 35, 38, 19, 16, 33, 30, 53, 26, 47, 22, 43, 70, 21, 40, 17, 34, 13, 28, 25, 46, 75, 42, 69, 104, 37, 62, 95, 58, 55, 86, 51, 48, 77, 114, 73, 108, 151, 68, 103, 64, 67, 36, 39, 66, 63
Offset: 1

Views

Author

Daniël Karssen, Jan 28 2019

Keywords

Comments

This is an infinite extension of A316667 with which it agrees for the first 2016 terms. - N. J. A. Sloane, Jan 28 2019

Examples

			The board is numbered with the square spiral:
  17--16--15--14--13   :
   |               |   :
  18   5---4---3  12  29
   |   |       |   |   |
  19   6   1---2  11  28
   |   |           |   |
  20   7---8---9--10  27
   |                   |
  21--22--23--24--25--26
See A323809 for examples where "backtracking" happens. - _M. F. Hasler_, Nov 06 2019
		

Crossrefs

The sequences involved in this set of related sequences are A316588, A316328, A316334, A316667, A323808, A323809, A323810, and A323811.
Cf. A326924 & A326922 (using L2-norm), A328908 & A328928 (L1-norm), A328909 & A328929 (sup norm); A326916 & A326918 (digits on spiral), A326413 and A328698 (variants with other tie breaker).

Programs

Formula

a(n) = A323809(n-1) + 1. - M. F. Hasler, Nov 06 2019

A323809 Squares visited by a knight on a spirally numbered board, moving always to the lowest available unvisited square, or one step back if no unvisited square is available.

Original entry on oeis.org

0, 9, 2, 5, 8, 3, 6, 1, 4, 7, 10, 13, 28, 31, 14, 11, 26, 23, 44, 19, 22, 43, 40, 17, 34, 37, 18, 15, 32, 29, 52, 25, 46, 21, 42, 69, 20, 39, 16, 33, 12, 27, 24, 45, 74, 41, 68, 103, 36, 61, 94, 57, 54, 85, 50, 47, 76, 113, 72, 107, 150, 67, 102, 63, 66, 35, 38, 65, 62
Offset: 0

Views

Author

Daniël Karssen, Jan 28 2019

Keywords

Comments

This is an infinite extension of A316328, with which it coincides for the first 2016 terms. - N. J. A. Sloane, Jan 29 2019
From M. F. Hasler, Nov 04 2019: (Start)
At move 99999, the least yet unvisited square has number 66048, which is near the border of the visited region. This suggests that the knight will eventually visit every square. Can this be proved or disproved through a counterexample?
More formally, let us call "isolated" a set of unvisited squares which is connected through knight moves, but which cannot be extended to a larger such set by adding a further square. Can there exist at some moment a finite isolated set which the knight cannot reach? (Without the last condition, the square a(2016) would clearly satisfy the condition just before the knight reaches it.)
Such subsets have a good chance of preserving this property forever. It should be possible to prove that an isolated subset sufficiently far (2 knight moves?) from any other unvisited square (or from the infinite connected subset of unvisited squares) remains so forever. (This condition of distance could replace the time-dependent condition "reachable by the knight".)
If such (forever) isolated sets do exist, with what frequency will they occur? Could they have a nonzero asymptotic density? Will this (if so, how) depend on the way the knight measures "lowest available" (cf. variants where the taxicab or Euclidean or sup norm distance from the origin is used)? (End)

Examples

			The board is numbered following a square spiral:
  16--15--14--13--12   :
   |               |   :
  17   4---3---2  11  28
   |   |       |   |   |
  18   5   0---1  10  27
   |   |           |   |
  19   6---7---8---9  26
   |                   |
  20--21--22--23--24--25
.
From _M. F. Hasler_, Nov 06 2019: (Start)
At move 2015, the knight lands on a(2015) = 2083, from where no unvisited squares can be reached. So the knight moves back to a(2016) = a(2014) = 2466, from where it goes on to the unvisited square a(2017) = 2667.
Similarly, at moves 2985, 3120, 3378, 7493, 8785, 9738, 10985, 11861, 11936, 12160, 18499, 18730, 19947 and 22251, the knight get "trapped" and has to move to the previous square on the next move.
On move 23044, the same happens on square 25808, and the knight must move back to square a(23045) = a(23043) = 27111. However, there is still no unvisited square in reach, so the knight has to make another step back to a(23046) = a(23042) = 28446, before it can move on to a(23047) = 29123. (End)
		

Crossrefs

The sequences involved in this set of related sequences are A316588, A316328, A316334, A316667, A323808, A323809, A323810 and A323811.
Cf. A326924 & A326922 (using L2-norm), A328908 & A328928 (L1-norm), A328909 & A328929 (sup norm); A326916 & A326918 (digits on spiral), A326413 and A328698 (variants with other tie breaker).

Programs

  • PARI
    Nmax=1e5 /* number of terms to compute */; {local( K=[[(-1)^(i\2)<<(i>4),(-1)^i<<(i<5)]|i<-[1..8]], pos(x,y)=if(y>=abs(x),4*y^2-y-x,-x>=abs(y),4*x^2-x-y,-y>=abs(x),(4*y-3)*y+x,(4*x-3)*x+y), coords(n, m=sqrtint(n), k=m\/2)=if(m<=n-=4*k^2, [n-3*k, -k], n>=0, [-k, k-n], n>=-m, [-k-n, k], [k, 3*k+n]), U=0, Umin=0, t(x, p=pos(x[1],x[2]))=if(pt(x+K), K))[1], back=0); my(A=List(0)); for(n=1, Nmax, back||U+=1<<(A[n]-Umin); while(bittest(U,0), U>>=1; Umin++); listput(A, nxt(A[n])); if(A[n+1] != oo, back=0, A[n+1]=A[n+1-back+=2])); print("Index of the last term: ", #A-1); A323809(n)=A[n+1];}

Formula

a(n) = A323808(n+1) - 1. - M. F. Hasler, Nov 06 2019

Extensions

Edited by M. F. Hasler, Nov 02 2019

A326916 Trajectory of the knight's tour for choice of the square with the lowest digit, then closest to the origin, then first in the spiral.

Original entry on oeis.org

0, 11, 14, 31, 28, 51, 10, 13, 34, 95, 190, 247, 312, 385, 244, 133, 242, 239, 376, 301, 372, 233, 370, 295, 232, 173, 228, 367, 230, 171, 226, 223, 358, 285, 220, 355, 282, 217, 352, 283, 218, 115, 44, 73, 20, 71, 40, 17, 36, 15, 18, 3, 12, 1, 22, 75, 46, 117, 48, 77, 24, 79, 50, 81, 118, 221, 286, 225, 292, 229, 296, 451, 298, 235
Offset: 0

Views

Author

M. F. Hasler, Oct 21 2019

Keywords

Comments

A variant of Angelini's "Kneil's Knumberphile Knight", inspired by Sloane's "The Trapped Knight", cf. A316328 and links:
Consider an infinite chess board with squares numbered along the infinite square spiral starting with 0 at the origin (as in A174344, A274923 and A296030). The squares are filled with successive digits of the integers: 0, 1, 2, ..., 9, 1, 0, 1, 1, ... (= A007376 starting with 0). The knight moves at each step to the yet unvisited square with the lowest digit on it, and in case of a tie, the one closest to the origin, first by Euclidean distance, then by appearance on the spiral (i.e., number of the square). This sequence lists the number of the square visited in the n-th move, if the knight starts at the origin, viz a(0) = 0.
It turns out that following these rules, the knight gets trapped at the 1070th move, when he can't reach any unvisited square.
See A326918 for the sequence of visited digits, given as A007376(a(n)).
Many squares, e.g., 2: (1,1), 4: (-1,1), 5: (-1,0), 6: (-1,-1), 7: (0,-1), 8: (1,-1), 9: (2,-1), ..., will never be visited, even in the infinite extension of the sequence where the knight can move back if it gets trapped, in order to resume with a new unvisited square, as in A323809. - M. F. Hasler, Nov 08 2019

Crossrefs

Programs

  • PARI
    {L326916=List(0) /* list of terms */; U326916=1 /* bitmap of used squares */; local( K=vector(8, i, [(-1)^(i\2)<<(i>4), (-1)^i<<(i<5)])/* knight moves */, coords(n, m=sqrtint(n), k=m\/2)=if(m<=n-=4*k^2, [n-3*k, -k], n>=0, [-k, k-n], n>=-m, [-k-n, k], [k, 3*k+n]), pos(x, y)=if(y>=abs(x), 4*y^2-y-x, -x>=abs(y), 4*x^2-x-y, -y>=abs(x), (4*y-3)*y+x, (4*x-3)*x+y), val(x, p=pos(x[1],x[2]))=if(bittest(U326916, p), oo, [A007376(p), norml2(x), p])); iferr( for(n=1,oo, my(x=coords(L326916[n])); U326916+=1<A326916(n)=L326916[n+1]} \\ Requires function A007376; defines function A326916.

A335816 Squares visited by a chess king moving on a square-spiral numbered board where the king moves to the adjacent unvisited square containing the spiral number with the fewest divisors. In case of a tie it chooses the square with the lowest spiral number.

Original entry on oeis.org

1, 2, 3, 11, 29, 13, 31, 59, 33, 61, 97, 139, 191, 251, 193, 141, 142, 143, 101, 65, 37, 17, 5, 19, 7, 23, 47, 79, 49, 25, 9, 8, 6, 4, 14, 15, 34, 35, 62, 63, 98, 99, 64, 66, 67, 103, 149, 201, 263, 331, 409, 493, 587, 586, 687, 797, 689, 589, 691, 591, 499, 593, 501
Offset: 1

Views

Author

Scott R. Shannon, Jun 25 2020

Keywords

Comments

This sequences gives the numbers of the squares visited by a chess king moving on a square-spiral numbered board where the king starts on the 1 numbered square and at each step moves to an adjacent unvisited square, out of the eight adjacent neighboring squares, which contains the number with the fewest divisors. If two or more adjacent squares exist with the same fewest number of divisors then the square with the lowest spiral number is chosen. Note that if the king simply moves to the smallest available number, as the knight does in A316667, the sequence will be infinite as the king will just follow the square spiral path.
The sequence is finite. After 411 steps the square with number 760 is visited, after which all adjacent neighboring squares have been visited.
Due to the king's preference for squares with the fewest divisors it will move to a prime numbered square when possible, and the lowest prime if two or more unvisited primes are in adjacent squares. Of the 411 visited squares 134 contain prime numbers while 277 contain composites. The largest visited square is a(365) = 3061.

Examples

			The board is numbered with the square spiral:
.
  17--16--15--14--13   .
   |               |   .
  18   5---4---3  12   29
   |   |       |   |   |
  19   6   1---2  11   28
   |   |           |   |
  20   7---8---9--10   27
   |                   |
  21--22--23--24--25--26
.
a(1) = 1, the starting square for the king.
a(2) = 2. The eight unvisited squares around a(1) the king can move to are numbered 2,3,4,5,6,7,8,9. Of these 2,3,5,7 have the minimum two divisors, and of those 2 is the smallest.
a(4) = 11. The six unvisited squares around a(3) = 3 the king can move to are numbered 4,11,12,13,14,15. Of these 11 and 13 have the minimum two divisors, and of those 11 is the smallest.
		

Crossrefs

A333714 Squares visited by a chess king moving on a square-spiral numbered board where the king moves to the adjacent unvisited square containing the spiral number with the most divisors. In case of a tie it chooses the square with the highest spiral number.

Original entry on oeis.org

1, 8, 24, 48, 80, 120, 168, 224, 288, 360, 440, 528, 624, 728, 840, 960, 1088, 1224, 1368, 1520, 1680, 1848, 2024, 2208, 2400, 2600, 2808, 3024, 3248, 3480, 3720, 3968, 4224, 4488, 4760, 5040, 5328, 5624, 5928, 6240, 6560, 6888, 7224, 7568, 7920, 8280, 8648, 9024, 9408, 9800, 10200, 10608
Offset: 1

Views

Author

Scott R. Shannon, Jul 02 2020

Keywords

Comments

This sequence gives the numbers of the squares visited by a chess king moving on a square-spiral numbered board where the king starts on the 1 numbered square and at each step moves to an adjacent unvisited square, out of the eight adjacent neighboring squares, which contains the number with the most divisors. If two or more adjacent squares exist with the same highest number of divisors then the square with the highest spiral number is chosen. Given both of these rules tend to force the king to squares with larger numbers, and thus move away from the central 1 starting square, it is remarkable that the king is eventually trapped. Note that if the king simply moves to the highest available number the sequence will be infinite as the king will step along the southeast diagonal from square 1 forever.
The sequence is finite. After 1113 steps the square with number 855481 is visited, after which all adjacent neighboring squares have been visited.
Due to the king's preference for squares with the most divisors it will avoid prime numbers unless no other choice exists. Of the 1113 visited squares only once does it visit a square with a prime number, at a(308) = 108223. This is due to a(307) = 106913 having square 108223 as its sole neighboring unvisited square. This is the only time in the sequence where only one unvisited adjacent neighbor is available.
As even numbers >= 6 will always contain 4 or more divisors the king will tend to visit more even numbers than odd numbers; in the 1113 visited squares 929 contain an even number while only 184 contain an odd number.
As the even numbers are diagonally adjacent in the square spiral the king's path will be dominated by diagonal steps, often taking many diagonal steps in succession - see the attached link image. In fact after the first downward step to 8 the next 110 steps are along the southeast diagonal, stepping to successively larger even numbers. This sequence is finally broken on the 112th step when the square with number 50624, with 28 divisors, is the next square in the southeast direction. However the square with number 50622, with 32 divisors, is in the southwest direction so is the next square chosen. It is not until the 166th step, to the square with number 108230, that the path takes a step to a lower number than the one it is currently on.
The largest visited square is a(1050) = 942676. The visited square with the maximum number of divisors is a(680) = 388080, which has 180 divisors. The lowest unvisited square is 2.

Examples

			The board is numbered with the square spiral:
.
  17--16--15--14--13   .
   |               |   .
  18   5---4---3  12   29
   |   |       |   |   |
  19   6   1---2  11   28
   |   |           |   |
  20   7---8---9--10   27
   |                   |
  21--22--23--24--25--26
.
a(1) = 1, the starting square for the king.
a(2) = 8. The eight unvisited squares around a(1) the king can move to are numbered 2,3,4,5,6,7,8,9. Of these 6 and 8 both have the maximum four divisors, and of those 8 is the largest.
a(3) = 24. The seven unvisited squares around a(2) = 8 the king can move to are numbered 9,2,6,7,22,23,24. Of these 24 has eight divisors, the largest number.
a(113) = 50622. The seven unvisited squares around a(112) = 49728 the king can move to are numbered 50622, 49727, 50623, 48841, 50624, 49729, 48842. Of these 50622 has thirty-two divisors, the largest number. This is the step that breaks the sequence of 110 steps to the southeast direction starting from a(2) = 8.
a(308) = 108223. This is the first and only time a prime number is visited; a(307) = 106913 has square 108223 as the sole unvisited adjacent neighbor.
a(1114) = 855481. The two unvisited squares around a(1113) = 859184 the king can move to are numbered 862894 and 855481. Of these 855481 has eight divisors, the largest number. However square 855481 is surrounded by the eight squares with numbers 859183, 855480, 851785, 859184, 851786, 859185, 855482, 851787 all of which have been previously visited, so the king is trapped.
		

Crossrefs

Cf. A333713 (choose lowest spiral number in case of tie), A335816, A316667, A330008, A329520, A326922, A328928, A328929, A033996.
Showing 1-10 of 19 results. Next