A328935 Imprimitive Carmichael numbers: Carmichael numbers m such that if m = p_1 * p_2 * ... *p_k is the prime factorization of m then g(m) = gcd(p_1 - 1, ..., p_k - 1) > sqrt(lambda(m)), where lambda is the Carmichael lambda function (A002322).
294409, 399001, 488881, 512461, 1152271, 1461241, 3057601, 3828001, 4335241, 6189121, 6733693, 10267951, 14676481, 17098369, 19384289, 23382529, 50201089, 53711113, 56052361, 64377991, 68154001, 79624621, 82929001, 84350561, 96895441, 115039081, 118901521, 133800661
Offset: 1
Keywords
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Andrew Granville and Carl Pomerance, Two contradictory conjectures concerning Carmichael numbers, Mathematics of Computation, Vol. 71, No. 238 (2002), pp. 883-908.
Programs
-
Mathematica
aQ[n_] := Length[(f = FactorInteger[n])] > 2 && Max[f[[;; , 2]]] == 1 && Divisible[n-1, (lambda = LCM @@ (f[[;; , 1]] - 1))] && GCD @@ (f[[;; , 1]] - 1) > Sqrt[lambda]; Select[Range[4*10^6], aQ]
-
PARI
isA328935(m)=f=factor(m);!(issquarefree(f)&&omega(f)>2)&&return(0);p=f[,1]~;r=apply(x->x-1,p);foreach(r,x,(m-1)%x!=0&&return(0));g=gcd(r);a=r/g;g>lcm(a) \\ p, g, and a are like in Granville & Pomerance, Jeppe Stig Nielsen, Apr 21 2021
Comments